Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Diffusion coefficient force

Thus one must rely on macroscopic theories and empirical adjustments for the determination of potentials of mean force. Such empirical adjustments use free energy data as solubilities, partition coefficients, virial coefficients, phase diagrams, etc., while the frictional terms are derived from diffusion coefficients and macroscopic theories for hydrodynamic interactions. In this whole field of enquiry progress is slow and much work (and thought ) will be needed in the future. [Pg.22]

Before pursuing the diffusion process any further, let us examine the diffusion coefficient itself in greater detail. Specifically, we seek a relationship between D and the friction factor of the solute. In general, an increment of energy is associated with a force and an increment of distance. In the present context the driving force behind diffusion (subscript diff) is associated with an increment in the chemical potential of the solute and an increment in distance dx ... [Pg.624]

These three terms represent contributions to the flux from migration, diffusion, and convection, respectively. The bulk fluid velocity is determined from the equations of motion. Equation 25, with the convection term neglected, is frequently referred to as the Nemst-Planck equation. In systems containing charged species, ions experience a force from the electric field. This effect is called migration. The charge number of the ion is Eis Faraday s constant, is the ionic mobiUty, and O is the electric potential. The ionic mobiUty and the diffusion coefficient are related ... [Pg.65]

Do diffusion coefficient corrected for thermodynamic driving force, mvs... [Pg.1495]

Systems that are near to ideality can be described satisfactorily with Equation 4.4-4, but the equation does not work very well in systems that are far from thermodynamic ideality, even if the self-diffusion coefficients and activities are known. Since systems with ionic liquids show strong intermolecular forces, there is a need... [Pg.164]

Provided that the catalyst is active enough, there will be sufficient conversion of the pollutant gases through the pellet bed and the screen bed. The Sherwood number of CO is almost equal to the Nusselt number, and 2.6% of the inlet CO will not be converted in the monolith. The diffusion coefficient of benzene is somewhat smaller, and 10% of the inlet benzene is not converted in the monolith, no matter how active is the catalyst. This mass transfer limitation can be easily avoided by forcing the streams to change flow direction at the cost of some increased pressure drop. These calculations are comparable with the data in Fig. 22, taken from Carlson 112). [Pg.104]

In addition, it was concluded that the liquid-phase diffusion coefficient is the major factor influencing the value of the mass-transfer coefficient per unit area. Inasmuch as agitators operate poorly in gas-liquid dispersions, it is impractical to induce turbulence by mechanical means that exceeds gravitational forces. They conclude, therefore, that heat- and mass-transfer coefficients per unit area in gas dispersions are almost completely unaffected by the mechanical power dissipated in the system. Consequently, the total mass-transfer rate in agitated gas-liquid contacting is changed almost entirely in accordance with the interfacial area—a function of the power input. [Pg.307]

Ionic, polar and amphiphilic solubilizates are forced to reside for relatively long times in very small compartments within the micelle (intramicellar confinement, compart-mentalization) involving low translational diffusion coefficients and enhancement of correlation times. [Pg.475]

The ionic mobilities Uj depend on the retarding factor 0 valid for a particular medium [Eq. (1.8)]. It is evident that this factor also influences the diffusion coefficients. To find the connection, we shall assume that the driving force of diffusion is the chemical potential gradient that is, in an ideal solution,... [Pg.54]

The velocity of the dimer along its internuclear z-axis can be determined in the steady state where the force due to the reaction is balanced by the frictional force (yz = (z F). Since the diffusion coefficient is related to the friction by D = kuT/( = 1/pC we have... [Pg.135]

Outer sphere relaxation arises from the dipolar intermolecular interaction between the water proton nuclear spins and the gadolinium electron spin whose fluctuations are governed by random translational motion of the molecules (106). The outer sphere relaxation rate depends on several parameters, such as the closest approach of the solvent water protons and the Gdm complex, their relative diffusion coefficient, and the electron spin relaxation rate (107-109). Freed and others (110-112) developed an analytical expression for the outer sphere longitudinal relaxation rate, (l/Ti)os, for the simplest case of a force-free model. The force-free model is only a rough approximation for the interaction of outer sphere water molecules with Gdm complexes. [Pg.89]


See other pages where Diffusion coefficient force is mentioned: [Pg.22]    [Pg.59]    [Pg.20]    [Pg.397]    [Pg.339]    [Pg.352]    [Pg.352]    [Pg.297]    [Pg.171]    [Pg.1228]    [Pg.365]    [Pg.1201]    [Pg.631]    [Pg.109]    [Pg.226]    [Pg.562]    [Pg.585]    [Pg.59]    [Pg.142]    [Pg.95]    [Pg.96]    [Pg.97]    [Pg.35]    [Pg.76]    [Pg.853]    [Pg.220]    [Pg.95]    [Pg.152]    [Pg.361]    [Pg.89]    [Pg.98]    [Pg.147]    [Pg.94]    [Pg.478]    [Pg.46]    [Pg.21]   
See also in sourсe #XX -- [ Pg.219 ]




SEARCH



Diffusion coefficients intermolecular forces

Diffusion, forced

Force, diffusion

© 2024 chempedia.info