Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Diffusion charge-carrier mediated

Figure 1 General pathways through which molecules can actively or passively cross a monolayer of cells. (A) Endocytosis of solutes and fusion of the membrane vesicle with the opposite plasma membrane in an active process called transcytosis. (B) Similar to A, but the solute associates with the membrane via specific (e.g., receptor) or nonspecific (e.g., charge) interactions. (C) Passive diffusion between the cells through the paracellular space. (C, C") Passive diffusion (C ) through the cell membranes and cytoplasm or (C") via partitioning into and lateral diffusion within the cell membrane. (D) Active or carrier-mediated transport of an otherwise poorly membrane permeable solute into and/or out of a cellular barrier. Figure 1 General pathways through which molecules can actively or passively cross a monolayer of cells. (A) Endocytosis of solutes and fusion of the membrane vesicle with the opposite plasma membrane in an active process called transcytosis. (B) Similar to A, but the solute associates with the membrane via specific (e.g., receptor) or nonspecific (e.g., charge) interactions. (C) Passive diffusion between the cells through the paracellular space. (C, C") Passive diffusion (C ) through the cell membranes and cytoplasm or (C") via partitioning into and lateral diffusion within the cell membrane. (D) Active or carrier-mediated transport of an otherwise poorly membrane permeable solute into and/or out of a cellular barrier.
Molecules with a large molecular weight or size are confined to the transcellular route and its requirements related to the hydrophobicity of the molecule. The transcellular pathway has been evaluated for many years and is thought to be the main route of absorption of many drugs, both with respect to carrier-mediated transport and passive diffusion. The most well-known requirement for the passive part of this route is hydrophobicity, and a relationship between permeability coefficients across cell monolayers such as the Caco-2 versus log P and log D 7.4 or 6.5 have been established [102, 117]. However, this relationship appears to be nonlinear and reaches a plateau at around log P of 2, while higher lipophilicities result in reduced permeability [102, 117, 118]. Because of this, much more attention has recently been paid towards molecular descriptors other than lipophilicity [86, 119-125] (see section 5.5.6.). The relative contribution between the para-cellular and transcellular components has also been evaluated using Caco-2 cells, and for a variety of compounds with different charges [110, 112] and sizes [112] (see Section 5.4.5). [Pg.113]

Grape compounds which can enter the yeast cell either by diffusion of the undissociated lipophilic molecule or by carrier-mediated transport of the charged molecule across the cell membrane are potentially subject to biochemical transformations by enzymatic functions. A variety of biotransformation reactions of grape compounds that have flavour significance are known. One of the earlier studied biotransformations in yeast relates to the formation of volatile phenols from phenolic acids (Thurston and Tubb 1981). Grapes contain hydroxycinnamic acids, which are non-oxidatively decarboxylated by phenyl acryl decarboxylase to the vinyl phenols (Chatonnet et al. 1993 Clausen et al. 1994). [Pg.319]

Figure 2 Schematic illustration of the (transport) properties of the blood-brain barrier. Shown is the influence of astrocyte endfeet at the brain capillary endothelial cell. This cell has narrow tight junctions, low pinocytotic activity, many mitochondria, and luminal anionic sites that hinder the transport of negatively charged compounds. Passive hydrophilic transport occurs via paracellular diffusion (tight junctions), whereas passive lipophilic transport is a transcytotic process. Adsorptive-, receptor-, and carrier-mediated transport has been indicated. The metabolic properties of the BBB are illustrated by the various enzymes at the BBB [from (157), with permission]. Figure 2 Schematic illustration of the (transport) properties of the blood-brain barrier. Shown is the influence of astrocyte endfeet at the brain capillary endothelial cell. This cell has narrow tight junctions, low pinocytotic activity, many mitochondria, and luminal anionic sites that hinder the transport of negatively charged compounds. Passive hydrophilic transport occurs via paracellular diffusion (tight junctions), whereas passive lipophilic transport is a transcytotic process. Adsorptive-, receptor-, and carrier-mediated transport has been indicated. The metabolic properties of the BBB are illustrated by the various enzymes at the BBB [from (157), with permission].
It is not uncommon for drug compounds to be able to perform very well in a variety of microtiter plate-based assays, but when transferred to in vivo assays, they cannot reach the therapeutic target site. The molecule must permeate through a number of cell membranes made up of phospholipid bilayers, which can increase the passage of highly charged polar molecules. Among the most common means by which a molecule can cross such a membrane are transcellular routes such as passive diffusion, carrier-mediated active transport, and metabolic enzymes, paracellular... [Pg.119]


See other pages where Diffusion charge-carrier mediated is mentioned: [Pg.396]    [Pg.443]    [Pg.446]    [Pg.449]    [Pg.450]    [Pg.457]    [Pg.359]    [Pg.284]    [Pg.426]    [Pg.381]    [Pg.428]    [Pg.431]    [Pg.434]    [Pg.435]    [Pg.442]    [Pg.643]    [Pg.451]    [Pg.456]    [Pg.43]    [Pg.45]    [Pg.436]    [Pg.441]    [Pg.585]    [Pg.20]    [Pg.53]    [Pg.377]    [Pg.29]    [Pg.202]    [Pg.210]    [Pg.2965]    [Pg.2990]    [Pg.904]    [Pg.194]    [Pg.112]    [Pg.17]    [Pg.129]    [Pg.337]    [Pg.188]    [Pg.62]    [Pg.412]    [Pg.124]    [Pg.221]    [Pg.61]    [Pg.389]   
See also in sourсe #XX -- [ Pg.400 , Pg.410 , Pg.417 , Pg.428 , Pg.429 , Pg.430 , Pg.431 , Pg.435 ]

See also in sourсe #XX -- [ Pg.400 , Pg.410 , Pg.417 , Pg.428 , Pg.429 , Pg.430 , Pg.431 , Pg.435 ]




SEARCH



Carrier - diffusion

Charge carrier

Charge carriers diffusion

Charge diffusive

Charge mediated

Charge mediators

Charged carriers

Diffuse charges

© 2024 chempedia.info