Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Diethyl malonate syntheses with

Friedel-Crafts acylation of benzo[6]thiophene and its derivatives with succinic anhydride132,439,662,663 or the ester chloride of succinic acid614, 618, 650,662 gives a y-keto acid (or ester), which is reduced to the corresponding y-(benzo[6]thienyl)butyric acid by the Huang Minion or Clemmensen method. y-(Benzo[6]thienyl)butyric acids may alternatively be prepared by the diethyl malonate synthesis on the appropriate halide,439,499 by the Arndt-Eistert reaction on the corresponding propionyl chloride,409,618 or by cyclization.347,618 The ketones (317 R = Hor OMe)347 have been prepared by cyclization... [Pg.348]

When diethyl malonate reacts with ethyl 3-aminopicolinate, substituted 1,5-nap-hthyridine 25 is formed it is used in the synthesis of potential antimalarial remedies (1984AJC2469). [Pg.193]

The failure of pentafluoroacetophenone to undergo the normal reaction of aryl alkyl ketones with Vilsmeier-Haack reagent (POCl -HCO-NMe2) (Vol. 1, p, 199) has been attributed to steric hindrance around the carbonyl group. This conclusion is supported by the normal behaviour of the vinjiogue, rrons-GiFs-CHtCH--COMe (obtained via a diethyl malonate synthesis from pentafluorocinnamoyl chloride), which on treatment with POCls-HCO-NMes and then aqueous per-... [Pg.395]

Ethyl cyanoacetate (Section 111,131) is sometimes preferable to diethyl malonate for the synthesis of acids. It forms a sodio derivative with sodium ethoxide ... [Pg.484]

The properties of diethyl malonate that make the malonic ester synthesis a useful procedure are the same as those responsible for the synthetic value of ethyl acetoacetate The hydrogens at C 2 of diethyl malonate are relatively acidic and one is readily removed on treatment with sodium ethoxide... [Pg.897]

We see that a secondary alkyl halide is needed as the alkylating agent The anion of diethyl malonate is a weaker base than ethoxide ion and reacts with secondary alkyl halides by substitution rather than elimination Thus the synthesis of 3 methylpentanoic acid begins with the alkylation of the anion of diethyl mal onate by 2 bromobutane... [Pg.898]

Diethyl malonate has uses other than m the synthesis of carboxylic acids One particu larly valuable application lies m the preparation of barbituric acid by nucleophilic acyl substitution with urea... [Pg.900]

Thiourea (H2NCNH2) reacts with diethyl malonate and its alkyl derivatives in the same way that urea does Give the structure of the product obtained when thiourea is used instead of urea in the synthesis of pentobarbital The anesthetic thiopental (Pentothal) sodium is the sodium salt of this product yWhat IS the structure of this compound ... [Pg.901]

CH2=CHCH(NH2)CH2CH2C00H (18), obtained through condensation of diethyl malonate with l,4-dichloro-2-butene [764-41-0] (43), or the antiulcer Rebamipide [90098-04-7] (19), whose synthesis involves the use of 2-(acetylamino)malonate (44), are examples of new pharmaceuticals recently launched. [Pg.468]

Fig. 2. Synthesis of uma2enil (18). The isonitrosoacetanihde is synthesized from 4-f1iioroani1ine. Cyclization using sulfuric acid is followed by oxidization using peracetic acid to the isatoic anhydride. Reaction of sarcosine in DMF and acetic acid leads to the benzodiazepine-2,5-dione. Deprotonation, phosphorylation, and subsequent reaction with diethyl malonate leads to the diester. After selective hydrolysis and decarboxylation the resulting monoester is nitrosated and catalyticaHy hydrogenated to the aminoester. Introduction of the final carbon atom is accompHshed by reaction of triethyl orthoformate to... Fig. 2. Synthesis of uma2enil (18). The isonitrosoacetanihde is synthesized from 4-f1iioroani1ine. Cyclization using sulfuric acid is followed by oxidization using peracetic acid to the isatoic anhydride. Reaction of sarcosine in DMF and acetic acid leads to the benzodiazepine-2,5-dione. Deprotonation, phosphorylation, and subsequent reaction with diethyl malonate leads to the diester. After selective hydrolysis and decarboxylation the resulting monoester is nitrosated and catalyticaHy hydrogenated to the aminoester. Introduction of the final carbon atom is accompHshed by reaction of triethyl orthoformate to...
Beryllium, calcium, boron, and aluminum act in a similar manner. Malonic acid is made from monochloroacetic acid by reaction with potassium cyanide followed by hydrolysis. The acid and the intermediate cyanoacetic acid are used for the synthesis of polymethine dyes, synthetic caffeine, and for the manufacture of diethyl malonate, which is used in the synthesis of barbiturates. Most metals dissolve in aqueous potassium cyanide solutions in the presence of oxygen to form complex cyanides (see Coordination compounds). [Pg.385]

The malonic ester required for synthesis of cyclopal (107) can be obtained by alkylation of diethyl allylmalonate (115) with 1,2-dibromocyclopentane in the presence of excess base. It is probable that the reaction proceeds by elimination of hydrogen bromide from the dihalide as the first step. The resulting allilic halide (116) would be the most reactive electrophile in the reaction mixture and thus would quickly alkylate the anion of the malonate to afford 117. [Pg.270]

The malonic ester synthesis can also be used to prepare cydoalkane-carboxvlic acids. For example, when 1,4-dibromobutanc is treated with diethyl malonate in the presence of 2 equivalents of sodium ethoxide base, the second alkylation step occurs intrcunotecidariy to yield a cyclic product. Hydrolysis and decarboxylation then give cvclopentanecarboxylic acid. Three-, four-, five-. [Pg.857]

The synthesis of the right-wing sector, compound 4, commences with the prochiral diol 26 (see Scheme 4). The latter substance is known and can be conveniently prepared in two steps from diethyl malonate via C-allylation, followed by reduction of the two ethoxy-carbonyl functions. Exposure of 26 to benzaldehyde and a catalytic amount of camphorsulfonic acid (CSA) under dehydrating conditions accomplishes the simultaneous protection of both hydroxyl groups in the form of a benzylidene acetal (see intermediate 32, Scheme 4). Interestingly, when benzylidene acetal 32 is treated with lithium aluminum hydride and aluminum trichloride (1 4) in ether at 25 °C, a Lewis acid induced reduction takes place to give... [Pg.197]

Although heating benzene-1,2-diamine with malonic acid in aqueous hydrochloric acid affords the parent dione 26 (R = H) in 62% yield,277 the method cannot be extended to substituted malonic acids because decarboxylation intervenes however, the reaction of benzene-1,2-diamines with diethyl malonate and its derivatives constitutes a general procedure for the synthesis of l,5-benzodiazepine-2,4-diones 26 selected examples are given.278... [Pg.425]

The formation of the naphthalene (73) from the bis-ylide (72) and diethyl ketomalonate involves an unusual olefin synthesis on the carbonyl of an ester group. The methylene-pyrans (75) were formed when the diethyl malonates (74) were refluxed with j3-keto-ylides in xylene or decalin. Possible intermediates are the ketens (76) and the allenes (77). Addition of ylide to the allenes gives the betaines (78) which form methylene-pyrans either directly or via acetylenes as shown. [Pg.162]

Monoanions derived from nitroalkanes are more prone to alkylate on oxygen rather than on carbon in reactions with alkyl halides, as discussed in Section 5.1. Methods to circumvent O-alkylation of nitro compounds are presented in Sections 5.1 and 5.4, in which alkylation of the a.a-dianions of primary nitro compounds and radial reactions are described. Palladium-catalyzed alkylation of nitro compounds offers another useful method for C-alkylation of nitro compounds. Tsuj i and Trost have developed the carbon-carbon bond forming reactions using 7t-allyl Pd complexes. Various nucleophiles such as the anions derived from diethyl malonate or ethyl acetoacetate are employed for this transformation, as shown in Scheme 5.7. This process is now one of the most important tools for synthesis of complex compounds.6811-1 Nitro compounds can participate in palladium-catalyzed alkylation, both as alkylating agents (see Section 7.1.2) and nucleophiles. This section summarizes the C-alkylation of nitro compounds using transition metals. [Pg.138]

Microwave-mediated transesterification of commercially available neat poly(styr-ene-co-allyl alcohol) with ethyl 3-oxobutanoate, ethyl 3-phenyl-3-oxopropanoate, and diethyl malonate provided the desired polymer-supported /i-dicarbonyl compounds (Scheme 12.18) [65]. Multigram quantities of these interesting building blocks for heterocycle synthesis were obtained simply by exposing the neat mixture of reagents to microwave irradiation in a domestic microwave oven for 10 min. [Pg.418]

Synthesis of Compound I. As shown in Scheme II, 3-(thiophene-3-yl)propyl bromide can be prepared by a two-carbon homologation(2 ) of 3-thenyl bromide via reaction with diethyl malonate to form diethyl 3-thenylmalonate. This is followed by saponification, decarboxylation, reduction of acid to alcohol, (2 ) and replacement of the hydroxyl group with bromide by reacting with PBr3.(22) Compound 2 is synthesized by mono-quaternization of an excess of 4,4 -bipyridine with 3-(thiophene-3-yl)propyl bromide followed by N-methylation with CH3I. All the intermediates in Scheme II have been identified by NMR spectroscopy. 2 has been characterized by NMR and high resolution mass spectroscopy and by electrochemistry. [Pg.412]

The Michael addition of nucleophiles to coumarins catalyzed by solid bases provides an interesting approach to the synthesis of 4-substituted 3,4-dihydrocumarins, because with the conventional Michael catalysts the alkaline hydrolysis of the 8-lactone predominates (Scheme 44). Results were obtained when the Michael addition of diethyl malonate to coumarin was catalyzed by the activated Ba(OH)2 292). An unusual 1,2-addition-elimination process at the C = 0 bond was observed. The mechanism of this reaction was explained on the basis of the microcrystalline structure of the catalyst. It was suggested that the rigid coumarin molecule interacts with the Ba ions through the lone-pair electrons of both oxygen atoms of the... [Pg.290]

A pentopyranoside-fused butenolide is the key intermediate for the synthesis of the natural micotoxin patulin [226, 227]. Its synthesis involves Wittig olefination of a 3,4-di-O-protected arabinopyran-2-uloside, followed by protecting group removal and dehydration (Scheme 47). In other research, the glucopyranosid-2-uloside 190 was converted into the butenolide derivative 191 by aldol condensation with diethyl malonate and transesterification [228]. The latter was shown to be prone to autoxi-dation, leading to 192. Subsequent Michael addition with hydroxide ion, followed by decarboxylation, furnishes C-branched-chain sugar 193. [Pg.54]

Mettler and colleagues reported an alternative synthesis of malonate 16 in the same paper (Griffiths et al., 1991) in which they condensed cyclohexanone with ethyl cyano-acetate instead of diethyl malonate in the Knoevenagel reaction to give ethyl cyano(cyclohexylidene)-acetate (18). In the presence of a catalytic amount of sodium cyanide, the Michael addition of HCN to cyanoacetate 18 proceeded in good yield at room temperature to generate the dicyanoester 19. Intermediate 19 was selectively converted to malonate 16 with pressurized HCI treatment in ethanol (Scheme 16.4). [Pg.229]


See other pages where Diethyl malonate syntheses with is mentioned: [Pg.346]    [Pg.88]    [Pg.930]    [Pg.121]    [Pg.468]    [Pg.113]    [Pg.541]    [Pg.175]    [Pg.350]    [Pg.336]    [Pg.680]    [Pg.247]    [Pg.174]    [Pg.265]    [Pg.654]    [Pg.197]    [Pg.54]    [Pg.232]    [Pg.369]    [Pg.339]    [Pg.229]   
See also in sourсe #XX -- [ Pg.264 , Pg.265 ]




SEARCH



Diethyl malonate—

Malonic 2- -, diethyl

Malonic synthesis

© 2024 chempedia.info