Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Dienophiles Styrene, Tetracyanoethylene

Endo adducts are usually favored by iateractions between the double bonds of the diene and the carbonyl groups of the dienophile. As was mentioned ia the section on alkylation, the reaction of pyrrole compounds and maleic anhydride results ia a substitution at the 2-position of the pyrrole ring (34,44). Thiophene [110-02-1] forms a cycloaddition adduct with maleic anhydride but only under severe pressures and around 100°C (45). Addition of electron-withdrawiag substituents about the double bond of maleic anhydride increases rates of cycloaddition. Both a-(carbomethoxy)maleic anhydride [69327-00-0] and a-(phenylsulfonyl) maleic anhydride [120789-76-6] react with 1,3-dienes, styrenes, and vinyl ethers much faster than tetracyanoethylene [670-54-2] (46). [Pg.450]

We have also used poly(propynoic acid) in our studies of the photochemical interaction of PCSs with dienophiles, such as maleic anhydride, tetracyanoethylene, and styrene. This photochemical reaction of Diels-Alder type is accompanied by the breakdown of the conjugation system and the formation of slightly colored adducts266. Together with the cycloaddition reaction, photodegradation of PPA and its adducts takes place. A cycloaddition reaction is always preceded by the formation of a donor-acceptor complex of a PCS with a dienophile. [Pg.31]

The comparison of rates of cycloaddition of maleic anhydride, tetracyanoethylene, and styrene to PPA shows that the latter, irrespective of the presence of electronegative groups, behaves in these reactions not as an electron-poor diene system. This fact, together with the composition of side products (giving evidence of PPA decarboxylation), allows the assumption to be made that the cycloaddition of dienophiles involves mainly decarboxylated polyene sections of cis-transoid structure213, 266. This is in agreement with the fact that PPA with predominant trans-transoid configuration interacts with these dienophiles at a substantially lower rate. The ultimate amounts of the dienophile combined with PPA of this structure is also considerably smaller. [Pg.31]

The Bradsher reaction is formally a [4 + 2] Diels-Alder reaction. However, as a consequence of the aza cationic nature of the diene, this reaction proceeds by the inverse electron demand manifold. The classical Diels-Alder reaction employs the partnering of an electron-rich diene and an electron-deficient dienophile to provide the proper interaction of the highest occupied molecular orbital (HOMO) and lowest unoccupied molecular orbital (LUMO) as prescribed by frontier molecular orbital theory (FMO) to generate the observed adducts. Thus FMO theory interprets this reaction proceeding via the HOMO of the diene with the LUMO of the dienophile. In the case of the inverse electron demand reaction, the electronics of the reaction are inverted. Therefore, in the Bradsher reaction, the electron-deficient aza cation diene s LUMO interacts with the HOMO of an electron rich dienophile. This mechanistic pathway provided a rationalization for the lack of reactivity of the electron-deficient tetracyanoethylene (TCNE), while electron-rich styrenes afforded the predicted product from reaction of 1 to generate 2. ... [Pg.237]




SEARCH



Dienophil

Dienophile

Dienophiles

© 2024 chempedia.info