Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Dienes stereoselectivity

Diels-Alder reactions of enantiomerically enriched 2H-azirine 3-phosphon-ates (281), a new class of chiral iminodienophiles, and dienes stereoselectively furnish optically pure, bicyclic aziridine adducts (282). Hydrogenation of (282) results in a ring opening that affords the first examples of optically pure quaternary piperidine phosphonates. Two step synthesis of an enantiomeric pure cyclic phosphite (283) and its application as a chiral phosphorus nucleophile in the asymmetric Michael addition to nitroalkenes (284) provides an efficient... [Pg.157]

Note that the stereochemistry comes out right. H s a and b are cis because they were cis in the starting quinone and the Diels-Alder reaction is stereospecific in this respect. H is also cis to and H " because the Diels-Alder reaction is stereoselectively endo. These points are described in more detail in Norman p.284-6 and explained in Ian Fleming Frontier Orbitals and Organic Chemical Reactions, Wiley 1976, p. 106-109. How would you make diene A ... [Pg.70]

The ene reaction of an alkyne and an alkene produces a 1,4-diene. An important application, the regio- and stereoselective coupling of 17-(Z)-ethylidene steroids and alkynes to give cholane-type 16,22-dienes, is described in section 4.5.2. [Pg.40]

The early Escherunoser-Stork results indicated, that stereoselective cyclizations may be achieved, if monocyclic olefins with 1,5-polyene side chains are used as substrates in acid treatment. This assumption has now been justified by many syntheses of polycyclic systems. A typical example synthesis is given with the last reaction. The cyclization of a trideca-3,7-dien-11-ynyl cyclopentenol leads in 70% yield to a 17-acetyl A-norsteroid with correct stereochemistry at all ring junctions. Ozonolysis of ring A and aldol condensation gave dl-progesterone (M.B. Gravestock, 1978 see p. 279f.). [Pg.91]

Oxidation of olefins and dienes provides the classic means for syntheses of 1,2- and 1,4-difunctional carbon compounds. The related cleavage of cyclohexene rings to produce 1,6-dioxo compounds has already been discussed in section 1.14. Many regio- and stereoselective oxidations have been developed within the enormously productive field of steroid syntheses. Our examples for regio- and stereoselective C C double bond oxidations as well as the examples for C C double bond cleavages (see p. 87f.) are largely selected from this area. [Pg.123]

In Diels-Alder reactions a nitroolefin may function as an electron-deficient ene com-onent or a 1,2-dihydropyridine derivative may be used as a diene component. Both types of iactants often yield cyclic amine precursors in highly stereoselective manner (R.K. Hill, 1962 i. BOchi, 1965, 1966A). [Pg.297]

Diacetoxylation of various conjugated dienes including cyclic dienes has been extensively studied. 1,3-Cyclohexadiene was converted into a mixture of isomeric l,4-diacetoxy-2-cyclohexenes of unknown stereochemistry[303]. The stereoselective Pd-catalyzed 1,4-diacetoxylation of dienes is carried out in AcOH in the presence of LiOAc and /or LiCI and beiizoquinone[304.305]. In the presence of acetate ion and in the absence of chloride ion, /rau.v-diacetox-ylation occurs, whereas addition of a catalytic amount of LiCl changes the stereochemistry to cis addition. The coordination of a chloride ion to Pd makes the cis migration of the acetate from Pd impossible. From 1,3-cyclohexadiene, trans- and ci j-l,4-diacetoxy-2-cyclohexenes (346 and 347) can be prepared stereoselectively. For the 6-substituted 1,3-cycloheptadiene 348, a high diaster-eoselectivity is observed. The stereoselective cij-diacetoxylation of 5-carbo-methoxy-1,3-cyclohexadiene (349) has been applied to the synthesis of dl-shikimic acid (350). [Pg.68]

In order to make these oxidative reactions of 1,3-dienes catalytic, several reoxidants are used. In general, a stoichiometric amount of benzoquinone is used. Furthermore, Fe-phthalocyanine complex or Co-salen complex is used to reoxidize hydroquinone to benzoquinone. Also, it was found that the reaction is faster and stereoselectivity is higher when (phenylsulflnyl)benzoquinone (383) is used owing to coordination of the sulfinyl group to Pd, Thus the reaction can be carried out using catalytic amounts of PdfOAcji and (arylsulfinyl)benzoquinone in the presence of the Fe or Co complex under an oxygen atmosphere[320]. Oxidative dicyanation of butadiene takes place to give l,4-dicyano-2-butene(384) (40%) and l,2-dicyano-3-butene (385)[32l]. [Pg.73]

The coupling of alkenylboranes with alkenyl halides is particularly useful for the stereoselective synthesis of conjugated dienes of the four possible double bond isomers[499]. The E and Z forms of vinylboron compounds can be prepared by hydroboration of alkynes and haloalkynes, and their reaction with ( ) or (Z)-vinyl iodides or bromides proceeds without isomerization, and the conjugated dienes of four possible isomeric forms can be prepared in high purity. [Pg.221]

Pd-catalyzed hydrostannation of dienes with HSnBu3 affords the (Z)-2-alke-nylstannane 89 with high regio- and stereoselectivities[84], Dimerization-dou-... [Pg.436]

Conjugated dienes, upon complexation with metal carbonyl complexes, are activated for Friedel-Crafts acylation reaction at the akyhc position. Such reactions are increasingly being used in the stereoselective synthesis of acylated dienes. Friedel-Crafts acetylation of... [Pg.562]

In general, hydroboration—protonolysis is a stereoselective noncatalytic method of cis-hydrogenation providing access to alkanes, alkenes, dienes, and enynes from olefinic and acetylenic precursors (108,212). Procedures for the protonolysis of alkenylboranes containing acid-sensitive functional groups under neutral or basic conditions have been developed (213,214). [Pg.314]

Cycloaddition involves the combination of two molecules in such a way that a new ring is formed. The principles of conservation of orbital symmetry also apply to concerted cycloaddition reactions and to the reverse, concerted fragmentation of one molecule into two or more smaller components (cycloreversion). The most important cycloaddition reaction from the point of view of synthesis is the Diels-Alder reaction. This reaction has been the object of extensive theoretical and mechanistic study, as well as synthetic application. The Diels-Alder reaction is the addition of an alkene to a diene to form a cyclohexene. It is called a [47t + 27c]-cycloaddition reaction because four tc electrons from the diene and the two n electrons from the alkene (which is called the dienophile) are directly involved in the bonding change. For most systems, the reactivity pattern, regioselectivity, and stereoselectivity are consistent with describing the reaction as a concerted process. In particular, the reaction is a stereospecific syn (suprafacial) addition with respect to both the alkene and the diene. This stereospecificity has been demonstrated with many substituted dienes and alkenes and also holds for the simplest possible example of the reaction, that of ethylene with butadiene ... [Pg.636]

In general, stereochemical predictions based on the Alder rule can be made by aligning the diene and dienophile in such a way that the unsaturated substituent on the dienophile overlaps the diene n system. The stereoselectivity predicted by the Alder rule is independent of the requirement for suprafacial-suprafacial cycloaddition, since both the endo and exo transition states meet this requirement. [Pg.638]

Benzylmercaptan reacts with diacetylenes 57 under base-catalyzed conditions in aregio- and stereoselective fashion to form diadducts Z,Z-l,4-di(benzylthio)buta-1,3-dienes (59). In this case, monoadducts 58 can be isolated (96T12677). The reaction with r-butylmercaptans gives good results for diacetylenes with aromatic substituents. [Pg.174]

The 1,3-dipolar cycloaddition of dienes 86 with phenacyl derivatives 85 gave the pyrrolo[l,2-a]quinoline 87 regio- and stereoselectively (90DOK1156) (Scheme 15). [Pg.86]

Reaction of the allylborane 147 with 148 then workup with KOH gave the E isomer, while the workup with sulfuric acid gave the Z isomer 149. Heating the azidodiene 149 in CDCI3 in a sealed tube afforded 150 in one step. The stereoselectivity of the reaction was found to be slightly dependent on the geometry of the diene (89TL6661) (Scheme 29). [Pg.93]

Self-condensation of the substituted propiophenone, 15, by the pinacol reaction proceeds to give the glycol, 16, as the meso isomer. (If it is assumed that the transition state for this reaction resembles product, this stereoselectivity can be rationalized on the grounds of steric interaction compare A, which leads to the observed product, with B.) Dehydration under very specialized conditions (acetyl chloride, acetic anhydride) affords the bisstyrene-type diene (17). Removal of the acyl groups by means of base affords the synthetic estrogen, dien-... [Pg.102]


See other pages where Dienes stereoselectivity is mentioned: [Pg.253]    [Pg.10]    [Pg.76]    [Pg.76]    [Pg.538]    [Pg.242]    [Pg.253]    [Pg.10]    [Pg.76]    [Pg.76]    [Pg.538]    [Pg.242]    [Pg.85]    [Pg.92]    [Pg.130]    [Pg.213]    [Pg.299]    [Pg.337]    [Pg.402]    [Pg.527]    [Pg.157]    [Pg.160]    [Pg.772]    [Pg.21]    [Pg.917]    [Pg.271]    [Pg.121]    [Pg.203]    [Pg.304]    [Pg.150]    [Pg.41]    [Pg.78]    [Pg.272]    [Pg.278]    [Pg.355]   
See also in sourсe #XX -- [ Pg.433 ]




SEARCH



© 2024 chempedia.info