Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Diels normal reaction

Diels-Alder reactions can be divided into normal electron demand and inverse electron demand additions. This distinction is based on the way the rate of the reaction responds to the introduction of electron withdrawing and electron donating substituents. Normal electron demand Diels-Alder reactions are promoted by electron donating substituents on the diene and electron withdrawii substituents on the dienophile. In contrast, inverse electron demand reactions are accelerated by electron withdrawing substituents on the diene and electron donating ones on the dienophile. There also exists an intermediate class, the neutral Diels-Alder reaction, that is accelerated by both electron withdrawing and donating substituents. [Pg.4]

Figure 1.1. Orbital correlation diagram illustrating the distinction between normal electron demand (leftside) and inverse electron demand (right side) Diels-Alder reactions. Figure 1.1. Orbital correlation diagram illustrating the distinction between normal electron demand (leftside) and inverse electron demand (right side) Diels-Alder reactions.
Hydrogen bonding of water to the activating group of (for normal-electron demand Diels-Alder reactions) the dienophile constitutes the second important effect". Hydrogen bonds strengthen the electron-withdrawing capacity of this functionality and thereby decrease the HOMO-LUMO gap... [Pg.43]

The fact that good correlations are observed with d" rather than with a, is indicative of a strong infiuence of the substituent through a direct resonance interaction with a positive charge in the reacting system. The p-values are positive, which is expected for substituted dienophiles in a normal electron demand Diels-Alder reaction. Furthermore, the p-values do not exceed unity and are not significantly different from literature values reported for the uncatalysed reaction. It is tempting to... [Pg.55]

The effect of ligands on the endo-exo selectivity of Lewis-acid catalysed Diels-Alder reactions has received little attention. Interestingly, Yamamoto et al." reported an aluminium catalyst that produces mainly exo Diels-Alder adduct. The endo-approach of the diene, which is normally preferred, is blocked by a bulky group in the ligand. [Pg.91]

In the area of moleculady designed hot-melt adhesives, the most widely used resins are the polyamides (qv), formed upon reaction of a diamine and a dimer acid. Dimer acids (qv) are obtained from the Diels-Alder reaction of unsaturated fatty acids. Linoleic acid is an example. Judicious selection of diamine and diacid leads to a wide range of adhesive properties. Typical shear characteristics are in the range of thousands of kilopascals and are dependent upon temperature. Although hot-melt adhesives normally become quite brittle below the glass-transition temperature, these materials can often attain physical properties that approach those of a stmctural adhesive. These properties severely degrade as the material becomes Hquid above the melt temperature. [Pg.235]

More complete interpretations of Diels-Alder regioselectivity have been developed. MO results can be analyzed from an electrostatic perspective by calculating potentials at the various atoms in the diene and dienophile. These results give a more quantitatively accurate estimate of the substituent effects. Diels-Alder regioselectivity can also be accounted for in terms of HSAB theory (see Section 1.2.3). The expectation would be that the most polarizable (softest) atoms would lead to bond formation and that regioselectivity would reflect the best mateh between the diene and dienophile termini. These ideas have been applied using 3-2IG computations. The results are in agreement with the ortho rule for normal-electron-demand Diels-Alder reactions. ... [Pg.645]

The FMOs of acrolein to the left in Fig. 8.2 are basically slightly perturbed butadiene orbitals, while the FMOs of protonated acrolein resemble those of an allyl cation mixed in with a lone-pair orbital on the oxygen atom (Fig. 8.2, right). Based on the FMOs of protonated acrolein, Houk et al. [2] argued that the predominant interaction in a normal electron-demand carbo-Diels-Alder reaction is between the dienophile LUMO and diene HOMO (Fig. 8.1, left). This interaction is greatly... [Pg.303]

The two transition states in Figs 8.5 and 8.6 correspond in principle to a metal-catalyzed carho-Diels-Alder reaction under normal electron-demand reaction conditions and a hetero-Diels-Alder reaction with inverse electron-demand of an en-one with an alkene. The calculations by Houk et al. [6] indicated that with the basis set used there were no significant difference in the reaction course. [Pg.307]

We are now able to understand the Lewis acid-catalyzed normal electron-demand carbo-Diels-Alder reaction from a theoretical point of view. The calculated influence of the Lewis acids on the reaction rate, regio- and stereoselectivity in an... [Pg.313]

The basic concept of activation in hetero-Diels-Alder reactions is to utilize the lone-pair electrons of the carbonyl and imine functionality for coordination to the Lewis acid. The coordination of the dienophile to the Lewis acid changes the FMOs of the dienophile and for the normal electron-demand reactions a decrease of the LUMO and HOMO energies is observed leading to a better interaction with... [Pg.314]

Normal electron-demand controlled hetero-Diels-Alder reactions... [Pg.314]

Normal Electron-demand Hetero-Diels-Alder Reactions... [Pg.315]

The simplest dienophile, ethene, is poorly reactive. Electron-withdrawing and electron-donating groups, on the carbon atom double bond, activate the double bond in normal and inverse electron-demand Diels-Alder reactions, respectively. [Pg.4]

Extensive studies by Gorman and Gassman have shown that an allyl cation can be a 27r-electron component in a normal electron-demand cationic Diels-Alder reaction and, since a carbocation is a very strong electron-withdrawing group, the allyl cation is a highly reactive dienophile [19a, 21]. [Pg.6]

Since the reactivity depends on the lowest HOMO-LUMO energy separation that can be achieved by the reacting partners, all the factors, steric and electronic, that lower the HOMO-LUMO distance increase the reaction rate and, as a consequence, allow the reactions to be carried out under mild conditions. Thus the normal electron-demand Diels-Alder reaction between 1,4-benzoquinone and 1,3-butadiene (Equation 2.2) proceeds at 35 °C almost quantitatively. [Pg.29]

The combination of thionation by Lawesson s reagent [98] of oxoenamino-ketones 96 with normal electron-demand Diels-Alder reaction of conjugated aldehydes allows a variety of thiopyrans 97 to be synthesized by a regio-selective and chemoselective one-pot methodology [99] (Equation 2.28). Thionation occurred at the more electrophilic ketonic carbonyl group. O O... [Pg.69]

Normal Diels-Alder Reactions. Synthesis of Pyrones and Thiopyrans... [Pg.122]

Indole is a weak dienophile in normal Diels-Alder reactions and must be activated by electron-withdrawing substituents at C-2 and C-3. High... [Pg.164]

The Diels-Alder reaction of methyl methacrylate with cyclopentadiene was studied [72] with solutions from three different regions of the pseudophase diagram for toluene, water and 2-propanol, in the absence and in the presence of surfactant [sodium dodecyl sulfate (SDS) and hexadecyltrimethylammonium bromide (HTAB)]. The composition of the three solutions (Table 6.11) corresponds to a W/O-fiE (A), a solution of small aggregates (B) and a normal ternary solution (C). The diastereoselectivity was practically constant in the absence and in the presence of surfactant a slight increase of endo adduct was observed in the C medium in the presence of surfactant. This suggests that the reaction probably occurs in the interphase and that the transition state has a similar environment in all three media. [Pg.282]

In another aspect of the mechanism, the effects of electron-donating and electron-withdrawing substituents (p. 1065) indicate that the diene is behaving as a nucleophile and the dienophile as an electrophile. However, this can be reversed. Perchlorocyclopentadiene reacts better with cyclopentene than with maleic anhydride and not at all with tetracyanoethylene, though the latter is normally the most reactive dienophile known. It is apparent, then, that this diene is the electrophile in its Diels-Alder reactions. Reactions of this type are said to proceed with inverse electron demand ... [Pg.1067]

In all of the above discussion, we have assumed that a given molecule forms both the new s bonds from the same face of the 7t system. This manner of bond formation, called suprafacial, is certainly most reasonable and almost always takes place. The subscript s is used to designate this geometry, and a normal Diels-Alder reaction would be called a [7t2s+,i4s] cycloaddition (the subscript n indicates that n electrons are involved in the cycloaddition). However, we can conceive of another approach in which the newly forming bonds of the diene lie on opposite faces of the n system, that is, they point in opposite directions. [Pg.1072]

The compounds p2C=CX2 (X = P or Cl), especially p2C=Cp2, form cyclobutanes with many aikenes. Compounds of this type even react with conjugated dienes to give four-membered rings rather than undergoing normal Diels-Alder reactions. [Pg.1077]

They reported that the DFT calculations of 114 at the B3LYP/6-31G level showed that the ji-HOMO lobes at the a-position are slightly greater for the syn-n-face than for the anti face. The deformation is well consistent with the prediction by the orbital mixing rule. However, the situation becomes the reverse for the Jt-LUMO lobes, which are slightly greater at the anti than the syn-n-face. They concluded that the iyn-Jt-facial selectivity of the normal-electron-demand Diels-Alder reactions... [Pg.215]


See other pages where Diels normal reaction is mentioned: [Pg.4]    [Pg.6]    [Pg.8]    [Pg.11]    [Pg.26]    [Pg.44]    [Pg.52]    [Pg.63]    [Pg.92]    [Pg.174]    [Pg.832]    [Pg.140]    [Pg.151]    [Pg.302]    [Pg.314]    [Pg.314]    [Pg.3]    [Pg.23]    [Pg.1073]    [Pg.2091]    [Pg.109]    [Pg.2]    [Pg.184]    [Pg.186]   
See also in sourсe #XX -- [ Pg.18 , Pg.120 ]




SEARCH



Normal reactions

© 2024 chempedia.info