Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Diels-Alder reaction, inverse demand

DIELS-ALDER REACTION OF AN HETEROCYCLIC AZADIENE, 70, 79 Diels-Alder reaction, inverse demand, 70, 79 Diels-Alder reactions, 70, 85... [Pg.147]

The Diels-Alder reaction, inverse electronic demand Diels-Alder reaction, as well as the hetero-Diels-Alder reaction, belong to the category of [4+2]-cycloaddition reactions, which are concerted processes. The arrow pushing here is merely illustrative. [Pg.199]

DIELS-ALDER REACTION, INVERSE ELECTRON DEMAND, 66, 142, 147, 148... [Pg.241]

A. Diels-Alder Reactions-Inverse Electron Demand... [Pg.941]

Diels-Alder reaction, inverse electronic demand Diels-Alder reaction, hetero-Diels-Alder reaction... [Pg.98]

Diels-Alder reactions can be divided into normal electron demand and inverse electron demand additions. This distinction is based on the way the rate of the reaction responds to the introduction of electron withdrawing and electron donating substituents. Normal electron demand Diels-Alder reactions are promoted by electron donating substituents on the diene and electron withdrawii substituents on the dienophile. In contrast, inverse electron demand reactions are accelerated by electron withdrawing substituents on the diene and electron donating ones on the dienophile. There also exists an intermediate class, the neutral Diels-Alder reaction, that is accelerated by both electron withdrawing and donating substituents. [Pg.4]

Figure 1.1. Orbital correlation diagram illustrating the distinction between normal electron demand (leftside) and inverse electron demand (right side) Diels-Alder reactions. Figure 1.1. Orbital correlation diagram illustrating the distinction between normal electron demand (leftside) and inverse electron demand (right side) Diels-Alder reactions.
Fluorine-substituted heterodienes are particularly prone to inverse electron demand Diels-Alder reactions with electron-rich dienophiles, as can be seen from the examples in equations 94-97 [113, 114, 115, 116, 117]... [Pg.829]

Bis(trifluoromethyl)-substituted heterodienes are electron-deficient species They therefore react preferentially with electron-rich multiple bond systems to give [4+2] cycloadducts (Diels-Alder reaction with inverse electron demand) [238]... [Pg.871]

The total syntheses of fredericamycin 71 and camptothecin 72 made use of similar strategies. N-Sulfonyl-l-aza-1,3-butadienes in conjunction with electron rich dienophiles participated in the inverse electron demand Diels-Alder reaction to afford pyridines after treatment with base. [Pg.333]

Reaction of 2-(arylmethyleneamino)pyridines 335 and styrenes in the presence of hydroquinone afforded 2,4-diaryl-3,4-dihydro-2/f-pyrido[l,2-n]pyrimidines 336 by means of an inverse electron demand Diels-Alder reaction (95MI10). Reaction of 2-(benzylideneamino)pyridines 337 and chloroacetyl chloride gave 2-aryl-4//-pyrido[l,2-n]pyrimidin-4-ones 338 (97JMC2266). [Pg.240]

The inverse electron-demand Diels-Alder reaction is also accelerated by Lewis acids, but the successful application of chiral Lewis acids to this kind of Diels-Alder reaction is very rare. Marko and coworkers applied Kobayashi s catalyst system (Yb(OTf)3-BINOL-amine) to the Diels-Alder reaction of 3-methoxycarbonyl-2-py-rone with vinyl ether or sulfide [58] (Scheme 1.72, Table 1.29). A bulky ether or... [Pg.45]

Table 1.29 Asymmetric inverse electron demand Diels-Alder reactions catalyzed by 39 [58 ... Table 1.29 Asymmetric inverse electron demand Diels-Alder reactions catalyzed by 39 [58 ...
Scheeren et al. reported the first enantioselective metal-catalyzed 1,3-dipolar cycloaddition reaction of nitrones with alkenes in 1994 [26]. Their approach involved C,N-diphenylnitrone la and ketene acetals 2, in the presence of the amino acid-derived oxazaborolidinones 3 as the catalyst (Scheme 6.8). This type of boron catalyst has been used successfully for asymmetric Diels-Alder reactions [27, 28]. In this reaction the nitrone is activated, according to the inverse electron-demand, for a 1,3-dipolar cycloaddition with the electron-rich alkene. The reaction is thus controlled by the LUMO inone-HOMOaikene interaction. They found that coordination of the nitrone to the boron Lewis acid strongly accelerated the 1,3-dipolar cycloaddition reaction with ketene acetals. The reactions of la with 2a,b, catalyzed by 20 mol% of oxazaborolidinones such as 3a,b were carried out at -78 °C. In some reactions fair enantioselectivities were induced by the catalysts, thus, 4a was obtained with an optical purity of 74% ee, however, in a low yield. The reaction involving 2b gave the C-3, C-4-cis isomer 4b as the only diastereomer of the product with 62% ee. [Pg.218]

Honk et al. concluded that this FMO model imply increased asynchronicity in the bond-making processes, and if first-order effects (electrostatic interactions) were also considered, a two-step mechanisms, with cationic intermediates become possible in some cases. It was stated that the model proposed here shows that the phenomena generally observed on catalysis can be explained by the concerted mechanism, and allows predictions of the effect of Lewis acid on the rates, regioselectivity, and stereoselectivity of all concerted cycloadditions, including those of ketenes, 1,3-dipoles, and Diels-Alder reactions with inverse electron-demand [2],... [Pg.305]

The two transition states in Figs 8.5 and 8.6 correspond in principle to a metal-catalyzed carho-Diels-Alder reaction under normal electron-demand reaction conditions and a hetero-Diels-Alder reaction with inverse electron-demand of an en-one with an alkene. The calculations by Houk et al. [6] indicated that with the basis set used there were no significant difference in the reaction course. [Pg.307]

Inverse electron-demand controlled hetero-Diels-Alder reactions... [Pg.314]

Inverse Electron-demand Hetero-Diels-Alder Reactions... [Pg.320]

The final class of reactions to be considered will be the [4 + 2]-cycloaddition reaction of nitroalkenes with alkenes which in principle can be considered as an inverse electron-demand hetero-Diels-Alder reaction. Domingo et al. have studied the influence of reactant polarity on the reaction course of this type of reactions using DFT calculation in order to understand the regio- and stereoselectivity for the reaction, and the role of Lewis acid catalysis [29]. The reaction of e.g. ni-troethene 15 with an electron-rich alkene 16 can take place in four different ways and the four different transition-state structures are depicted in Fig. 8.16. [Pg.320]

There are Diels-Alder reactions known where the electronic conditions outlined above are just reversed. Such reactions are called Diels-Alder reactions with inverse electron demand For example the electron-poor diene hexachlorocy-clopentadiene 21 reacts with the electron-rich styrene 22 ... [Pg.92]

However, when 3,5-diphenyl-4//-pyrazol-4-one, a reagent that undergoes Diels- Alder reactions with inverse-electron demand, is used, addition of the 2,4-diene part of oxepin to one of the two C-N double bonds of the pyrazolone is observed to give 4.232... [Pg.52]

Interestingly, in the inverse-electron-demand Diels-Alder reactions of oxepin with various enophiles such as cyclopentadienones and tetrazines the oxepin form, rather than the benzene oxide, undergoes the cycloaddition.234 236 Usually, the central C-C double bond acts as dienophile. Oxepin reacts with 2,5-dimethyl-3,4-diphenylcyclopenta-2,4-dienone to give the cycloadduct 6 across the 4,5-C-C double bond of the heterocycle.234 The adduct resists thermal carbon monoxide elimination but undergoes cycloreversion to oxepin and the cyclopenta-dienone.234... [Pg.52]

The Diels-Alder reaction of cyclopropenes with 1,2,4,5-tetrazines (see Vol.E9c, p 904), a reaction with inverse electron demand, gives isolable 3,4-diazanorcaradienes 1, which are converted into 4H-1,2-diazepines 2 on heating. The transformation involves a symmetry allowed [1,5] sigmatropic shift of one of the bonds of the three-membered ring, a so-called walk rearrangement , followed by valence isomerization.106,107... [Pg.348]

Intermolecular [4C+2S] cycloaddition reactions where the diene moiety is contained in the carbene complex are less frequent than the [4S+2C] cycloadditions summarised in the previous section. However, 2-butadienylcarbene complexes, generated by a [2+2]/cyclobutene ring opening sequence, undergo Diels-Alder reactions with typical dienophiles [34,35] (Scheme 59). Also, Wulff et al. have described the application of pyranylidene complexes, obtained by a [3+3] cycloaddition reaction (see Sect. 2.8.1), in the inverse-electron-demand Diels-Alder reaction with enol ethers and enamines [87a]. Later, this strategy was applied to the synthesis of steroid-like ring skeletons [87b] (Scheme 59). [Pg.99]

The simplest dienophile, ethene, is poorly reactive. Electron-withdrawing and electron-donating groups, on the carbon atom double bond, activate the double bond in normal and inverse electron-demand Diels-Alder reactions, respectively. [Pg.4]


See other pages where Diels-Alder reaction, inverse demand is mentioned: [Pg.92]    [Pg.224]    [Pg.378]    [Pg.4]    [Pg.642]    [Pg.323]    [Pg.325]    [Pg.302]    [Pg.314]    [Pg.314]    [Pg.315]    [Pg.330]    [Pg.304]    [Pg.277]    [Pg.3]    [Pg.23]   
See also in sourсe #XX -- [ Pg.70 , Pg.79 ]




SEARCH



1.2- Diazines, inverse-electron-demand Diels-Alder reactions

Alkenes inverse electron demand Diels-Alder reactions

Asymmetric Diels-Alder reactions inverse-electron-demand

Catalytic asymmetric inverse-electron-demand Diels-Alder reaction

Demanding reaction

Diels-Alder reaction demand

Diels-Alder reaction inverse electron demand

Diels-Alder reactions with inverse electron demand

Hetero-Diels-Alder reactions inverse-electron-demand

Inverse electron demand Diels-Alder reactions, examples using

Inverse electron demand aza Diels Alder reaction

Inverse electron demand in Diels-Alder reaction

Inverse electron-demand Diels-Alder reactions alkenes, 1,2,4,5-tetrazine

Inverse electron-demand Diels-Alder reactions oxazole

Inverse electron-demand Diels-Alder reactions pyridazine

Inverse electronic demand Diels-Alder reaction

Retro “inverse electron-demand Diels-Alder reactions

© 2024 chempedia.info