Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Diels-Alder reaction interaction diagram

Orbital Interaction Analysis. An orbital interaction diagram for the Diels-Alder reaction is shown in Figure 12.5a. The geometry of approach of the two reagents which ensures a maximum favorable interaction between the frontier MOs (dashed lines) preserves a plane of symmetry at all separations. The MOs are labeled according to whether they are symmetric (S) or antisymmetric (A) with respect to reflection in the plane. Simultaneous overlap of both HOMO-LUMO pairs is a necessary feature of all peri-... [Pg.169]

Use orbital interaction diagrams to explain why benzyne is an excellent dienophile in Diels-Alder reactions. [Pg.284]

Diels-Alder reaction, 169-170 aromatic TS, 151 benzyne, 160 butadiene + ethylene, 169 diastereoselectivity, 292 interaction diagram, 169 orbital analysis, 169-170 orbital correlation diagram, 198, 201 reverse demand, 169 substituent effects, 169-170 Diethyl tartrate, 11 Difluorocarbene ( CF2), 115... [Pg.365]

The essential features of the Diels-Alder reaction are a four-electron n system and a two-electron it system which interact by a HOMO-LUMO interaction. The Diels-Alder reaction uses a conjugated diene as the four-electron n system and a it bond between two elements as the two-electron component. However, other four-electron it systems could potentially interact widi olefins in a similar fashion to give cycloaddition products. For example, an allyl anion is a four-electron it system whose orbital diagram is shown below. The symmetry of the allyl anion nonbonding HOMO matches that of the olefin LUMO (as does the olefin HOMO and the allyl anion LUMO) thus effective overlap is possible and cycloaddition is allowed. The HOMO-LUMO energy gap determines the rate of reaction, which happens to be relatively slow in this case. [Pg.319]

MOs, while tlie two 7t c orbitals lead to the tt and tt MOs. In the initial stage of (he dimerization, the interaction between two ethylencs is weak so that 7t+ and tt. lie far below the n+ and tt levels, so that only 7t+ and rr are occupied. Of the a orbitals of cyclobutane described earlier, only those related to the tt., 7t1 and nl levels by symmetry are shown in Figure 11.1. Not all the occupied MOs of the reactant lead to occupied orbitals in the product. In particular, tt. correlates with one component of the empty set in cyclobutane. The tt+ combination ultimately becomes one component of the filled set in cyclobutane. So the reaction is symmetry forbidden. The reader should carefully compare the correlation diagram for ethylene dimerization here with the Ho + O2 reaction in ITgure 5.8. flie two correlation diagrams are very similar, as they should be, since in this instance the spatial dfstributions of tt and n " are similar to those of and respectively, in H2. These two reactions are probably the premier examples of symmetry-forbidden reactions. A related symmetry-allowed example is the concerted cycloaddition of ethylene and butadiene, the Diels-Alder reaction. We shall not cover the orbital symmetry rules for organic, pericyclic reactions. There are several excellent reviews that the reader should consult.But it should be pointed out that the orbital symmetry rules have stereochemical implications in terms of the reaction path and products formed. The development of these rules by Woodward and Hoffmann... [Pg.192]

Optical purity, by NMR, 13, 14 Orbital correlation diagrams, 196-203 cycloaddition reactions, 197-196 Diels-Alder, 198 ethylene -E ethylene, 198 electrocyclic reactions, 198-200 butadienes, 199 hexatrienes, 199 limitations, 203 photochemical, 201 Woodward-Hoffinann, 197 Orbital energies, see also Energies, orbital degeneracy, 27, 90 Orbital interaction theory, 34-71 diagram, 40, 42, 47 limitations, 69-71 sigma bonds, 72-86 Orbitals... [Pg.338]


See other pages where Diels-Alder reaction interaction diagram is mentioned: [Pg.169]    [Pg.292]    [Pg.169]    [Pg.292]    [Pg.169]    [Pg.292]    [Pg.295]    [Pg.923]    [Pg.169]   
See also in sourсe #XX -- [ Pg.169 ]

See also in sourсe #XX -- [ Pg.169 ]

See also in sourсe #XX -- [ Pg.169 ]

See also in sourсe #XX -- [ Pg.169 ]




SEARCH



Interacting reaction

Interaction diagram

Reaction interactions

© 2024 chempedia.info