Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Isothermal dielectric response measurement

Other parameters which have been used to provide a measure of a include physical dimensions (thermomechanical analysis, TMA) [126], magnetic susceptibility [178,179], light emission [180,181], reflectance spectra (dynamic reflectance spectroscopy, DRS) [182] and dielectric properties (dynamic scanning dielectrometry, DSD) [183,184], For completeness, we may make passing reference here to the extreme instances of non-isothermal behaviour which occur during self-sustained burning (studied from responses [185] of a thermocouple within the reactant) and detonation. Such behaviour is, however, beyond the scope of the present review. [Pg.23]

Thermal analysis (TA) comprises a family of measuring techniques that share a common feature they measure a material s response to being heated or cooled (or, in some cases, held isothermally). The goal is to establish a connection between temperature and specific physical properties of materials. The most popular techniques are those that are the subject of this book, namely differential scanning calorimetry (DSC), thermogravimetric analysis (TGA), thermomechanical analysis (TMA), dynamic mechanical analysis (DMA), dielectric analysis (DEA), and micro/nano-thermal analysis (p/n-TA). [Pg.1]

The isothermal time dependence of relaxation and fluctuation due to molecular motions in liquids at equilibrium usually cannot be described by the simple linear exponential function exp(-t/r), where t is the relaxation time. This fact is well known, especially for polymers, from measurements of the time or frequency dependence of the response of the equilibrium liquid to external stimuli such as in mechanical [6], dielectric [7, 33], and light-scattering [15, 34] measurements, and nuclear-magnetic-resonance spectroscopy [14]. The correlation or relaxation function measured usually decays slower than the exponential function and this feature is often referred to as non-exponential decay or non-exponentiality. Since the same molecular motions are responsible for structural recovery, certainly we can expect that the time dependence of the structural-relaxation function under non-equilibrium conditions is also non-exponential. An experiment by Kovacs on structural relaxation involving a more complicated thermal history showed that the structural-relaxation function even far from equilibrium is non-exponential. For example (Fig. 2.7), poly(vinyl acetate) is first subjected to a down-quench from Tq = 40 °C to 10 °C, and then, holding the temperature constant, the sample... [Pg.82]


See other pages where Isothermal dielectric response measurement is mentioned: [Pg.224]    [Pg.226]    [Pg.371]    [Pg.375]    [Pg.585]    [Pg.387]    [Pg.246]    [Pg.8]    [Pg.521]    [Pg.535]    [Pg.72]   
See also in sourсe #XX -- [ Pg.226 ]




SEARCH



Dielectric response

Isothermal measurements

Isotherms dielectric

Isotherms measurement

© 2024 chempedia.info