Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Diazoacetic esters, reactions with alkenes compounds

Diazoacetic esters, reactions with alkenes, alkynes, heterocyclic and aromatic compounds, 18, 3 26, 2 a-Diazocarbonyl compounds, insertion and addition reactions, 26, 2 Diazomethane ... [Pg.588]

The Reactions of Diazoacetic Esters with Alkenes, Alkynes, Heterocyclic and Aromatic Compounds V. Dave and E. W. Warnhoff, Org. React., 1970,18, 217-402. Reactions of Singlet Oxygen with Heterocyclic Systems H. H. Wasserman and B. H. Lipshutz, Org. Chem., 1970, 40, 429-509. [Pg.68]

Reviews (a) V. Dave and E. W. Wamhoff, The Reactions of Diazoacetic Esters with Alkenes, Alkynes, Heterocyclic and Aromatic Compounds, in W. G. Dauben, ed., Organic Reactions, Vol. 18, Chap. 3, John Wiley Sons, New York, 1970. (b) G. Maas, Top. Curr. Chem., 137, 75 (1987). (c) J. Salaun, Chem. Rev., 89, 1247 (1989). (d) A. Demonceau, A. J. Hubert, and A. F. Noels, Basic Principles in Carbene Chemistry and Applications to Organic Synthesis, in A. F. Noels, M. Graziani, and A. J. Hubert, eds., Metal Promoted Selectivity in Organic Synthesis, p. 237, Kluwer Academic, Dordrecht, 1991. [Pg.133]

Cyclopropanation reactions with these catalysts are typically carried out with 0.5-2 mol% (with respect to the diazo compound) of catalyst and a five- to tenfold excess of alkene. Under these conditions, the formation of formal carbene dimers [e.g. diethyl ( )-but-2-enedioate and (Z)-but-2-enedioate from ethyl diazoacetate], arising from the competition between alkene and the metal-carbene intermediate for the diazo compound, can be largely suppressed. It has been shown, however, that the control of the addition rate of the diazoacetic ester has no effect on the cyclopropane yield with (dibenzonitrile)palladium(II) chloride as catalyst, in contrast to tetraacetatodirhodium, Rhg(CO)ig, and CuCl P(OR)3. ... [Pg.449]

Ethyl diazoacetate (228 mg, 2.0 mmol) was added at a controlled rate over a 6-8 h period to a stirred mixture of the alkene (20.0 mmol) or diene (10.0 mmol) and the catalyst (0.01 -0,02 mmol) under and ordinarily at 25 C. For copper(I) triflate catalyzed reactions with enol ethers, the diazo ester dissolved in the enol ether w as added to copper(II) triflate in EtjO in order to minimize polymerization of the enol ether. Alkenes were generally purified by distillation prior to their use. The initial solubility of the transition metal compound was dependent on the alkene employed, and, with the exception of Rhg(CO)jg, bis(acetylacetonato)copper(II), and copper bronze, homogeneous solutions were obtained prior to or immediately after the initial addition of ethyl diazoacetate. 1 h after addition was complete, EtjO was added, the resulting solution was washed twice with sat. aq NaHC03 dried (MgSOJ. EtjO and excess alkene were distilled under reduced pressure. The desired cyclopropanes were obtained either by fractional bulb-to-bulb distillation or by preparative GC (Table 8). [Pg.451]

The cyclopropanation of gaseous alkenes, butadiene, and allene (see Section 1.2.1.2.4.2.6.3.3., Table 11, entry 1) by diazoacetic esters can be achieved by passing a vapor-gas mixture of the alkene and the diazo compound at atmospheric pressure through a tubular continuous flow reactor which contains a copper catalyst (ca. 10%) deposited on pumice. In this manner, alkyl cyclopropanecarboxylates were obtained in yields of up to 50% with cop-per(II) sulfate (typical reaction temperature 65-110"C, contact time 3.6 s) or copper(II) oxide (85-200°C, 5s) as catalysts. [Pg.453]

Whereas the vast majority of cyclopropanation reactions, including systematic investigations on catalyst effectiveness, regio- and stereoselectivity (vide supra), have been carried out by combining alkenes and simple diazoacetic esters, the method can be extended to diazoacetic esters with functionalized ester groups, to disubstituted diazoacetic esters, and to several other classes of diazocarbonyl compounds. [Pg.462]

The Reactions of Diazoacetic Esters with Alkenes, Alkynes, Heterocyclic, and Aromatic Compounds Vinod Dave and E. W. Warnhoff... [Pg.421]

Palladium(II) acetate was found to be a good catalyst for such cyclopropanations with ethyl diazoacetate (Scheme 19) by analogy with the same transformation using diazomethane (see Sect. 2.1). The best yields were obtained with monosubstituted alkenes such as acrylic esters and methyl vinyl ketone (64-85 %), whereas they dropped to 10-30% for a,p-unsaturated carbonyl compounds bearing alkyl groups in a- or p-position such as ethyl crotonate, isophorone and methyl methacrylate 141). In none of these reactions was formation of carbene dimers observed. 7>ms-benzalaceto-phenone was cyclopropanated stereospecifically in about 50% yield PdCl2 and palladium(II) acetylacetonate were less efficient catalysts 34 >. Diazoketones may be used instead of diazoesters, as the cyclopropanation of acrylonitrile by diazoacenaph-thenone/Pd(OAc)2 (75 % yield) shows142). [Pg.125]

An important competing process with significant practical consequences is the catalytic dimerization of diazoacetate to form maleate and fumarate esters. Most catalysts suffer from this side reaction, leading to the use of the alkene as solvent in order to accelerate the productive pathway and the slow addition of diazo compound in order to minimize dimerization. Since this problem is generally shared across most catalyst architectures, it will be mentioned in discussions of individual asymmetric catalyst systems only in those instances where these precautions prove to be unnecessary. [Pg.6]

Even thiophene itself will react with carbenes, at sulfur, to produce isolable thiophenium ylides, and in these, the sulfur is definitely tetrahedral. The rearrangement of thiophenium bis(ethoxycarbonyl) methylide to the 2-substituted thiophene provides a rationalisation for the reaction of thiophene with ethyl diazoacetate, which produces what appears to be the product of carbene addition to the 2,3-double bond perhaps this proceeds via initial attack at sulfur followed by S C-2 rearrangement, then collapse to the cyclopropane. Acid catalyses conversion of the cyclopropanated compound into a thiophene-3-acetic ester. ° 2,5-Dichlorothiophenium bis(methoxycarbonyl)methylide has been used as an efficient source of the carbene simply heating it in an alkene results in the transfer of (Me02C)2C to the alkene. ... [Pg.329]

Metal-assisted decompositions of a-diazocarbonyl compounds in 1,2-dialkoxy-l-alkenes give dialkoxycyclopropylcarbonyl systems. Thus, reaction of 2,3-dihydro-1,4-dioxin with ethyl diazoacetate at 80°C over copper bronze yielded the cyclopropane (111) acid catalyzed solvolysis of this with water, and with ethanol, gave hemiacetal and acetal esters (112) and (113), respectively <85JOC4681>. [Pg.466]


See other pages where Diazoacetic esters, reactions with alkenes compounds is mentioned: [Pg.444]    [Pg.446]    [Pg.444]    [Pg.446]    [Pg.221]    [Pg.111]    [Pg.567]   
See also in sourсe #XX -- [ Pg.2 , Pg.3 , Pg.18 , Pg.26 ]




SEARCH



Alkenes reactions with diazoacetic esters

Compounds reaction with alkenes

Diazoacetate

Diazoacetate esters

Diazoacetates

Diazoacetic

Diazoacetic esters

Ester diazoacetates

Esters compounds

Reaction with alkenes

© 2024 chempedia.info