Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Diazo compounds esters

From Diazo Compounds via 1,3-Dipolar Cycloaddition. This method has been utilized widely in heterocychc chemistry. Pyrazohne (57) has been synthesized by reaction of ethyl diazoacetate (58) with a,P-unsaturated ester in the presence of pyridine (eq. 12) (42). [Pg.314]

Thermal conversion of diazirines to linear diazo compounds was postulated occasionally and proved by indirect methods. The existence of a diazo compound isomeric to diazirine (197) was proved spectroscopically on short thermolysis in DMSO (76JA6416). An intermediate diazoalkane was trapped by reaction with acetic acid, yielding the ester (198) (77JCS(P2)1214). [Pg.221]

Methylvinyldiazirine (199) rearranges at room temperature in the course of some days. Formation of the linear isomer is followed by electrocyclic ring closure to give 3-methyl-pyrazole. The linear diazo compound could be trapped by its reaction with acids to form esters, while the starting diazirine (199) is inert towards acids (B-71MI50801). [Pg.221]

In this review an attempt is made to discuss all the important interactions of highly reactive divalent carbon derivatives (carbenes, methylenes) and heterocyclic compounds and the accompanying molecular rearrangements. The most widely studied reactions have been those of dihalocarbenes, particularly dichlorocarbene, and the a-ketocarbenes obtained by photolytic or copper-catalyzed decomposition of diazo compounds such as diazoacetic ester or diazoacetone. The reactions of diazomethane with heterocyclic compounds have already been reviewed in this series. ... [Pg.57]

The strained bicyclic carbapenem framework of thienamycin is the host of three contiguous stereocenters and several heteroatoms (Scheme 1). Removal of the cysteamine side chain affixed to C-2 furnishes /J-keto ester 2 as a possible precursor. The intermolecular attack upon the keto function in 2 by a suitable thiol nucleophile could result in the formation of the natural product after dehydration of the initial tetrahedral adduct. In a most interesting and productive retrosynthetic maneuver, intermediate 2 could be traced in one step to a-diazo keto ester 4. It is important to recognize that diazo compounds, such as 4, are viable precursors to electron-deficient carbenes. In the synthetic direction, transition metal catalyzed decomposition of diazo keto ester 4 could conceivably furnish electron-deficient carbene 3 the intermediacy of 3 is expected to be brief, for it should readily insert into the proximal N-H bond to... [Pg.250]

The diazo function in compound 4 can be regarded as a latent carbene. Transition metal catalyzed decomposition of a diazo keto ester, such as 4, could conceivably lead to the formation of an electron-deficient carbene (see intermediate 3) which could then insert into the proximal N-H bond. If successful, this attractive transition metal induced ring closure would accomplish the formation of the targeted carbapenem bicyclic nucleus. Support for this idea came from a model study12 in which the Merck group found that rhodi-um(n) acetate is particularly well suited as a catalyst for the carbe-noid-mediated cyclization of a diazo azetidinone closely related to 4. Indeed, when a solution of intermediate 4 in either benzene or toluene is heated to 80 °C in the presence of a catalytic amount of rhodium(n) acetate (substrate catalyst, ca. 1000 1), the processes... [Pg.254]

Reagents that provide UV adsorptive derivatives of carboxylic acids are fairly numerous. The preparation of the simple benzyl esters by reacting the carboxylic ion with alkyl halides or diazo compounds has been unsuccessful due to their having unacceptable toxicity. The... [Pg.242]

Carboxylic acids can be converted to esters with diazo compounds in a reaction essentially the same as 10-15. In contrast to alcohols, carboxylic acids undergo the reaction quite well at room temperature, since the reactivity of the reagent increases with acidity. The reaction is used where high yields are important or where the acid is sensitive to higher temperatures. Because of availability, the diazo compounds most often used are diazomethane (for methyl esters) ... [Pg.490]

The starting diazo esters 110 were prepared by diazo transfer from the corresponding malonate esters 109. A selection of chiral Hgands in conjunction with 2mol% (with respect to the diazo compound) of [Cu(OTf)2] in (CH2C1)2 was then examined at 65 °C (Scheme 31). All of the Hgands tested were sufficiently reactive to produce diazo decomposition at 65 °C, although the yields of cyclopropanation products were quite variable. Even tertiary... [Pg.79]

Two methods for converting carboxylic acids to esters fall into the mechanistic group under discussion the reaction of carboxylic acids with diazo compounds, especially diazomethane and alkylation of carboxylate anions by halides or sulfonates. The esterification of carboxylic acids with diazomethane is a very fast and clean reaction.41 The alkylating agent is the extremely reactive methyldiazonium ion, which is generated by proton transfer from the carboxylic acid to diazomethane. The collapse of the resulting ion pair with loss of nitrogen is extremely rapid. [Pg.227]

There are two catalytically active residues in pepsin Asp-32 and Asp-215. Their ionizations are seen in the pH-activity profile, which has an optimum at pH 2 to 3, and which depends upon the acidic form of a group of pKa 4.5 and the basic form of a group of pKa 1.1.160,161 The pKa values have been assigned from the reactions of irreversible inhibitors that are designed to react specifically with ionized or un-ionized carboxyl groups. Diazo compounds—such as A-diazoacetyl-L-phenylalanine methyl ester, which reacts with un-ionized carboxyls—react specifically with Asp-215 up to pH 5 or so (equation 16.28).162-164 Epoxides, which react specifically with ionized carboxyls, modify Asp-32 (equation 16.29). [Pg.2]

Thermolysis of 58a in butanol affords, together with 17% of 60a (R = C4H9) which evidences the intermediacy of the thiophosphene 59 a, a variety of partly atypical products which seriously impede the desired rearrangement38. Photolysis of 58b in methanol is also found to give only 18 % 1,2-P/C shift to form the heterocumulene 59b, from which the thiophosphinic rater 60b (R = CH3) results 39). As already mentioned in connection with the photolysis of diazo compounds of type 36 (see Sect. 2.2), Wolff rearrangement (9%) and O/H insertion (6%) once again compete with thiophosphinic ester formation. Moreover, solvolysis of the P(S)/C(N2) bond 391 prevents a greater contribution of carbene products to the overall yield. [Pg.87]

On standing, diphenyldiazomethane decomposes to yield benzophenone azine. In one of the checkers runs the product was stored at room temperature after 2 days, crystals of the azine were visible. The product at this stage was assayed by treatment with benzoic acid addition of 6.8 g. of the diazo compound in a thin stream to a solution of 17 g. of benzoic acid in 90 ml. of ether, and, after 30 minutes, extraction of the excess benzoic acid with dilute sodium hydroxide followed by distillation of the ether, gave 7.4 g. (75%) of crude benzohydryl benzoate melting at 83-85°. In the same procedure the freshly prepared diazo compound gave a quantitative yield of the crude ester. [Pg.90]

Alkinyloxy)diazoacetic esters 11 give rise to product mixtures that could be separated only partially. The isolated products result from a tandem intramolecular cyclopropenation/cyclopropene —> vinylcarbene isomerization (12, 14) and from a twofold intermolecular (3+2)-cycloaddition of the intact diazo compound (13). [Pg.58]

The common by-products obtained in the transition-metal catalyzed reactions are the formal carbene dimers, diethyl maleate and diethyl fumarate. In accordance with the assumption that they owe their formation to the competition of olefin and excess diazo ester for an intermediate metal carbene, they can be widely suppressed by keeping the actual concentration of diazo compound as low as possible. Usually, one attempts to verify this condition by slow addition of the diazo compound to an excess (usually five- to tenfold) of olefin. This means that the addition rate will be crucial for the yields of cyclopropanes and carbene dimers. For example, Rh6(CO)16-catalyzed cyclopropanation of -butyl vinyl ether with ethyl diazoacetate proceeds in 69% yield when EDA is added during 30 minutes, but it increases to 87 % for a 6 h period. For styrene, the same differences were observed 65). [Pg.95]

In 1966, Nozaki et al. reported that the decomposition of o-diazo-esters by a copper chiral Schiff base complex in the presence of olefins gave optically active cyclopropanes (Scheme 58).220 221 Following this seminal discovery, Aratani et al. commenced an extensive study of the chiral salicylaldimine ligand and developed highly enantioselective and industrially useful cyclopropanation.222-224 Since then, various complexes have been prepared and applied to asymmetric cyclo-propanation. In this section, however, only selected examples of cyclopropanations using diazo compounds are discussed. For a more detailed discussion of asymmetric cyclopropanation and related reactions, see reviews and books.17-21,225... [Pg.243]

Methyl diazoacetate was obtained according to a procedure for ethyl diazoacetate (Searle, N.E. Org. Synth., Coll. Vol. A/1963, 42). Although the experiments were usually performed with distilled methyl diazoacetate (bp 43°C at 25 mm, bath temperature below 60°C) without any problems, the cyclopropanation reaction described works equally well with undistilled diazo compound. If distilled diazo compound is desired, the submitters have stated that "a spatula of K2CO3 Is added to the crude diazo ester to trap traces of add and then distill behind a safety shield . The checkers did not evaluate this aspect of the procedure. [Pg.97]

The synthesis of 1,2,3-selenadiazole derivatives has been reported. The reaction of aroyl chlorides such as 102 with potassium isoselenocyanate and ethyl diazoacetate yielded 5-(aroylimino)-2,5-dihydro-l, 2,3-selenadiazole-4-carboxylate esters such as 104. A reaction mechanism via the initial formation of the corresponding aroyl isoselenocyanate 103 followed by a 1,3-dipolar cycloaddition of the diazo compound with the C=Se bond is proposed <00HCA539>. [Pg.203]

An important competing process with significant practical consequences is the catalytic dimerization of diazoacetate to form maleate and fumarate esters. Most catalysts suffer from this side reaction, leading to the use of the alkene as solvent in order to accelerate the productive pathway and the slow addition of diazo compound in order to minimize dimerization. Since this problem is generally shared across most catalyst architectures, it will be mentioned in discussions of individual asymmetric catalyst systems only in those instances where these precautions prove to be unnecessary. [Pg.6]

The photochemical reaction of diiron //-alkcnylidc complexes with diazo compounds leads to -allene complexes, which can be cleaved by several methods to yield allenes, for example allenic esters [32]. [Pg.361]

The simple primary amines of the aliphatic series, then, do not form diazo-compounds because the reaction which would le, d to their formation only occurs at a temperature at which they are destroyed. The reactivity of the NH2-group can, however, be increased by a neighbouring carbonyl group. Thus we come to the case of the esters of the a-amino-carboxylic acids and of the a-amino-ketones. The ethyl ester of glycine can be diazotised even in the cold the diazo-compound which does not decompose under these conditions undergoes stabilisation by elimination of water and change into ethyl diazoacetate ... [Pg.270]

By very careful hydrogenation (with stannous chloride in ethereal hydrogen chloride) phenyl azide has been converted into the exceedingly sensitive phenyltriazene (Dimroth), which, as has been shown, can be reconverted into the former by dehydrogenation. As in the case of the aliphatic diazo-compounds, an open chain structural formula has lately also been assigned to hydrazoic acid and its esters, so that the changes just mentioned may be formulated as follows ... [Pg.289]


See other pages where Diazo compounds esters is mentioned: [Pg.4]    [Pg.21]    [Pg.339]    [Pg.73]    [Pg.583]    [Pg.50]    [Pg.54]    [Pg.79]    [Pg.96]    [Pg.107]    [Pg.167]    [Pg.245]    [Pg.245]    [Pg.246]    [Pg.191]    [Pg.173]    [Pg.15]   
See also in sourсe #XX -- [ Pg.19 , Pg.245 ]




SEARCH



Diazo compounds

Diazo compounds carboxylic acid ester

Diazo, esters

Diazo-acetic ester compounds

Esters compounds

Esters from diazo compounds

Keto esters diazo compounds from

Sulfurous acid esters diazo compounds

© 2024 chempedia.info