Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Metoprolol Diazepam

Ciprofloxacin (Cipro, Cipro XR, Proquin XR) [Antibiotic/ Fluoroquinolone] Uses Rx lower resp tract, sinuses, skin skin structure, bone/joints, urinary tract Infxns including prostatitis Action Quinolone antibiotic DNA gyrase Dose Adults. 250-750 mg PO ql2h XR 500-1000 mg PO q24h or 200-400 mg IV ql2h in renal impair Caution [C, /-] Children <18 y Contra Component sensitivity Disp Tabs, susp, inj SE Restlessness, N/V/D, rash, ruptured tendons, T LFTs Interactions T Effects Wf probenecid T effects OF diazepam, theophylline, caffeine, metoprolol, propranolol, phenytoin, warfarin effects W/ antacids, didanosine, Fe salts. Mg, sucralfate, Na bicarbonate,... [Pg.112]

Omeprazole can inhibit the metabolism of drugs metabolised mainly by the cytochrome P-450 enzyme subfamily 2C (diazepam, phenytoin), but not of those metabolished by subfamilies lA (caffeine, theophylline), 2D (metoprolol, propranolol), and 3A (ciclosporin, lidocaine (lignocaine), quinidine). Since relatively few drugs are metabolised mainly by 2C compared with 2D and 3A, the potential for omeprazole to interfere with the metabolism of other drugs appears to be limited, but the half lives of diazepam and phenytoin are prolonged as much as by cimetidine. [Pg.187]

Clofibric acid, bezafibrate Diclofenac, ibuprofen, naproxen Metoprolol, propanolol, betaxolol Terbutalin, salbutamol Diazepam... [Pg.336]

Figure 6.17 The classification of 42 drugs in the (solubility-dose ratio, apparent permeability) plane of the QBCS. The intersection of the dashed lines drawn at the cutoff points form the region of the borderline drugs. Key 1 acetyl salicylic acid 2 atenolol 3 caffeine 4 carbamazepine 5 chlorpheniramine 6 chlorothiazide 7 cimetidine 8 clonidine 9 corticosterone 10 desipramine 11 dexamethasone 12 diazepam 13 digoxin 14 diltiazem 15 disopyramide 16 furosemide 17 gancidovir 18 glycine 19 grizeofulvin 20 hydrochlorothiazide 21 hydrocortisone 22 ibuprofen 23 indomethacine 24 ketoprofen 25 mannitol 26 metoprolol 27 naproxen 28 panadiplon 29 phenytoin 30 piroxicam 31 propanolol 32 quinidine 33 ranitidine 34 salicylic acid 35 saquinavir 36 scopolamine 37 sulfasalazine 38 sulpiride 39 testosterone 40 theophylline 41 verapamil HC1 42 zidovudine. Figure 6.17 The classification of 42 drugs in the (solubility-dose ratio, apparent permeability) plane of the QBCS. The intersection of the dashed lines drawn at the cutoff points form the region of the borderline drugs. Key 1 acetyl salicylic acid 2 atenolol 3 caffeine 4 carbamazepine 5 chlorpheniramine 6 chlorothiazide 7 cimetidine 8 clonidine 9 corticosterone 10 desipramine 11 dexamethasone 12 diazepam 13 digoxin 14 diltiazem 15 disopyramide 16 furosemide 17 gancidovir 18 glycine 19 grizeofulvin 20 hydrochlorothiazide 21 hydrocortisone 22 ibuprofen 23 indomethacine 24 ketoprofen 25 mannitol 26 metoprolol 27 naproxen 28 panadiplon 29 phenytoin 30 piroxicam 31 propanolol 32 quinidine 33 ranitidine 34 salicylic acid 35 saquinavir 36 scopolamine 37 sulfasalazine 38 sulpiride 39 testosterone 40 theophylline 41 verapamil HC1 42 zidovudine.
BETA-BLOCKERS DIAZEPAM May occasionally cause t sedation during metoprolol and propranolol therapy Propranolol and metoprolol inhibit the metabolism of diazepam Warn patients about t sedation... [Pg.72]

Among drugs considered to be absorbed more quickly with food are carbamazepine, phenytoin, diazepam, dicoumarol, erythromycin (contentious), griseofulvin, hydralazine, hydrochlorothiazide, lithium citrate, labetalol, propranolol, metoprolol, nitrofurantoin, propoxyphene and spironolactone,... [Pg.706]

A 61-year-old man developed weakness, severe jaundice, pruritus, and weight loss over 2 weeks. He had started to take metoprolol, fosinopril, and diazepam for hjrpertension 5 weeks before. He had raised hepatic transaminases and bihrubin. A hver biopsy showed cholestasis in a normal cellular architecture. A lympho-cjTe transformation assay showed reactivity to fosinopril but not diazepam or metoprolol. Bihrubin concentrations took 4 months to normalize and pruritus persisted for 6 months. [Pg.1450]

For certain substances it is generally accepted that in conventional orcil pharmaceutical formulations they do not cause bioequivalence problems. That is why the MEB does not consider it necessary to perform and submit bioequivalence research for the following 19 substances amoxicilline, dextromethorfan, diazepam, doxycycline, potassiumfenoxymethylpenicillin, flunarizine, indometacine, isosorbide-5-mononitrate, lorazepam, lormetazepam, metoprolol, naproxen, nitrazepam, oxprenolol, paracetamol, pindolol, piroxicam, salbutamol, temazepam. According to the MEB there is enough evidence present in literature to prove that there is no problem with the bioequivalence. [Pg.373]

Also analyzed acebutolol, acepromazine, acetaminophen, acetazolamide, acetophenazine, albuterol, amitriptyline, amobarbital, amoxapine, antipsrrine, atenolol, atropine, azata-dine, baclofen, benzocaine, bromocriptine, brompheniramine, brotizolam, bupivacaine, buspirone, butabarbital, butalbital, caffeine, carbamazepine, cetirizine, chlorqyclizine, chlordiazepoxide, chlormezanone, chloroquine, chlorpheniramine, chlorpromazine, chlorpropamide, chlorprothixene, chlorthalidone, chlorzoxazone, cimetidine, cisapride, clomipramine, clonazepam, clonidine, clozapine, cocaine, codeine, colchicine, qyclizine, (yclo-benzaprine, dantrolene, desipramine, diazepam, diclofenac, diflunisal, diltiazem, diphenhydramine, diphenidol, dipheno late, dipyridamole, disopyramide, dobutamine, doxapram, doxepin, droperidol, encainide, ethidium bromide, ethopropazine, fenoprofen, fentanyl, flavoxate, fluoxetine, fluphenazine, flurazepam, flurbiprofen, fluvoxamine, fii-rosemide, glutethimide, glyburide, guaifenesin, haloperidol, homatropine, hydralazine, hydrochlorothiazide, hydrocodone, hydromorphone, hydro g chloroquine, hydroxyzine, ibuprofen, imipramine, indomethacin, ketoconazole, ketoprofen, ketorolac, labetalol, le-vorphanol, lidocaine, loratadine, lorazepam, lovastatin, loxapine, mazindol, mefenamic acid, meperidine, mephenytoin, mepivacaine, mesoridazine, metaproterenol, methadone, methdilazine, methocarbamol, methotrexate, methotrimeprazine, methoxamine, methyl-dopa, methylphenidate, metoclopramide, metolazone, metoprolol, metronidazole, midazolam, moclobemide, morphine, nadolol, nalbuphine, naloxone, naphazoline, naproxen, nifedipine, nizatidine, norepinephrine, nortriptyline, oxazepam, oxycodone, oxymetazo-line, paroxetine, pemoline, pentazocine, pentobarbital, pentoxifylline, perphenazine, pheniramine, phenobarbital, phenol, phenolphthalein, phentolamine, phenylbutazone, phenyltoloxamine, phenytoin, pimozide, pindolol, piroxicam, pramoxine, prazepam, prazosin, probenecid, procainamide, procaine, prochlorperazine, procyclidine, promazine, promethazine, propafenone, propantheline, propiomazine, propofol, propranolol, protriptyline, quazepam, quinidine, quinine, racemethorphan, ranitidine, remoxipride, risperidone, salicylic acid, scopolamine, secobarbital, sertraline, sotalol, spironolactone, sulfinpyrazone, sulindac, temazepam, terbutaline, terfenadine, tetracaine, theophylline, thiethyl-perazine, thiopental, thioridazine, thiothixene, timolol, tocainide, tolbutamide, tolmetin, trazodone, triamterene, triazolam, trifluoperazine, triflupromazine, trimeprazine, trimethoprim, trimipramine, verapamil, warfarin, xylometazoline, yohimbine, zopiclone... [Pg.53]


See other pages where Metoprolol Diazepam is mentioned: [Pg.228]    [Pg.238]    [Pg.313]    [Pg.228]    [Pg.238]    [Pg.650]    [Pg.519]    [Pg.410]    [Pg.123]    [Pg.128]    [Pg.588]    [Pg.468]    [Pg.1106]    [Pg.1038]    [Pg.157]    [Pg.17]    [Pg.22]    [Pg.43]    [Pg.44]    [Pg.60]    [Pg.62]    [Pg.77]    [Pg.80]    [Pg.124]    [Pg.125]    [Pg.137]    [Pg.142]    [Pg.173]    [Pg.188]    [Pg.202]    [Pg.204]    [Pg.208]    [Pg.228]    [Pg.246]    [Pg.342]    [Pg.384]    [Pg.403]   
See also in sourсe #XX -- [ Pg.723 ]




SEARCH



Metoprolol

© 2024 chempedia.info