Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Diastereomers with chirality centers

The term meso (Greek, middle ) was used to describe an achiral member of a set of diastereomers, some of which are chiral. The optically inactive isomer seemed to be in the middle between the dextrorotatory and levorotatory isomers. The definition just given ( an achiral compound with chirality centers ) is nearly as complete, and more easily applied, especially when you remember that chirality centers are usually asymmetric carbon atoms. [Pg.205]

As many biologically important analytes do not exhibit efficient detection properties (UV or visible light absorption, fluorescence, or electrochemical activity), their detection limits are relatively low. For example, drugs with chiral centers exist naturally in racemic mixtures that are optically inactive due to the nearly equal proportion of the enantiomers. The determination of enantiomeric purity is of paramount importance in the pharmaceutical industry as each enantiomer may have different therapeutic characteristics. Currently, a method that offers multiple advantages for chiral separations is by converting enantiomers to diastereomers by precolumn derivatization with a pure fluorescent enantiomer. For instance, propranolol existing in racemic form may be analyzed by precolumn derivatization with (+ )-l-(9-fluorenyl)ethyl chloroformate. Well correlated calibration plots were found up to 400pmol and a reproducibility of <2% for each derivative. [Pg.1383]

In this procedure the single enantiomer of an amine, (i )-l-phenylethylamine, is added to a solution of the racemic form of an acid. The salts that form are diastereomers. The chirality centers of the acid portion of the salts are enantiomericaUy related to each other, but the chirality centers of the amine portion are not. The diastereomers have different solubilities and can be separated by careful crystallization. The separated salts are then acidified with hydrochloric acid and the enantiomeric acids are obtained from the separate solutions. The amine remains in solution as its hydrochloride salt. [Pg.906]

Steroids are another class of natural products with multiple chirality centers One such compound is cholic acid which can be obtained from bile Its structural formula IS given m Figure 7 12 Cholic acid has 11 chirality centers and so a total (including cholic acid) of 2" or 2048 stereoisomers have this constitution Of these 2048 stereoiso mers how many are diastereomers of cholic acid s Remember Diastereomers are stereoisomers that are not enantiomers and any object can have only one mirror image Therefore of the 2048 stereoisomers one is cholic acid one is its enantiomer and the other 2046 are diastereomers of cholic acid Only a small fraction of these compounds are known and (+) cholic acid is the only one ever isolated from natural sources... [Pg.306]

A novel technique for dating archaeological samples called ammo acid racemiza tion (AAR) IS based on the stereochemistry of ammo acids Over time the configuration at the a carbon atom of a protein s ammo acids is lost m a reaction that follows first order kinetics When the a carbon is the only chirality center this process corresponds to racemization For an ammo acid with two chirality centers changing the configuration of the a carbon from L to D gives a diastereomer In the case of isoleucme for example the diastereomer is an ammo acid not normally present m proteins called alloisoleucme... [Pg.1116]

Multiple Chiral Centers. The number of stereoisomers increases rapidly with an increase in the number of chiral centers in a molecule. A molecule possessing two chiral atoms should have four optical isomers, that is, four structures consisting of two pairs of enantiomers. However, if a compound has two chiral centers but both centers have the same four substituents attached, the total number of isomers is three rather than four. One isomer of such a compound is not chiral because it is identical with its mirror image it has an internal mirror plane. This is an example of a diaster-eomer. The achiral structure is denoted as a meso compound. Diastereomers have different physical and chemical properties from the optically active enantiomers. Recognition of a plane of symmetry is usually the easiest way to detect a meso compound. The stereoisomers of tartaric acid are examples of compounds with multiple chiral centers (see Fig. 1.14), and one of its isomers is a meso compound. [Pg.47]

Chirahty at the phosphoms is an unavoidable problem in all phosphorothioate syntheses. The phosphoramidite method produces a mixture of both the and the diastereomers having a small excess of the isomer (53). Although some progress has been made in the chiral synthesis of dinucleoside phosphorothioates, low yields have limited the utility of these approaches. The chiral center may be eliminated by replacing the other, nonbridging oxygen with sulfur. Avoidance of the chirahty problem is one reason for the interest in phosphorodithioates. [Pg.262]

Reaction of 2-[A -(rra -crotyl)-A -benzylamino]-3-formyl-4/f-pyrido[l,2-n]pyrimidin-4-one (269) with chiral primary amines 270 and 271 gave mixtures of diastereoisomers of tetracyclic compounds 273 and tricyclic 275 (96T131]]). The chiral centers in 272 and 274 did not provide any stereocontrol for the formation of diastereomers 273 and 275, respectively. [Pg.228]

By treatment of a racemic mixture of an aldehyde or ketone that contains a chiral center—e.g. 2-phenylpropanal 9—with an achiral Grignard reagent, four stereoisomeric products can be obtained the diastereomers 10 and 11 and the respective enantiomer of each. [Pg.144]

Synthesis of the prototype begins with Friedel Crafts acetylation of salicylamide ( ). Bromination of the ketone (25) followed by displacement with amine gives the corresponding ami noketone ( ). Catalytic hydrogenation to the ami noalcohol completes the synthesis of labetolol (24). The presence of two chiral centers at remote positions leads to the two diastereomers being obtained in essentially equal amounts. [Pg.25]

Some molecules have more than one chirality center. Enantiomers have opposite configuration at all chirality centers, whereas diastereomers have the same configuration in at least one center but opposite configurations at the others. Epimers are diastereomers that differ in configuration at only one chirality center. A compound with n chirality centers can have a maximum of 2n stereoisomers. [Pg.322]

Pitfalls are encountered when allowing chiral nonracemic aldehydes to react with chiral, but racemic, reagents having a stereogenic center at the metal-bearing carbon atom, since its chiral induction usually overrides that of the substrate leading to mixtures of two diastereomers in essentially equal amounts26,27 (Sections D.1.3.3.1.4.1., D.1.3.3.3.3.3.2. and D.1.3.3.3.8.2.3.1.). [Pg.214]

There are other stereochemical aspects to the reduction of aldehydes and ketones. If there is a chiral center to the carbonyl group, even an achiral reducing agent can give more of one diastereomer than of the other. Such diastereoselective reductions have been carried out with considerable success. In most such cases Cram s rule (p. 147) is followed, but exceptions are known. ... [Pg.1201]

Compound (+ )-(53) has been made from one of the diastereomers of the (—)-menthyl ester of 3-(p-anisylmethyl-l-naphthylstannyl)propionic acid, (54) ([a]p°° — 24) which could be obtained from the mixture of diastereomers because it is much less soluble in -pentane at low temperature than the other one. Their separation could be followed by NMR, both diastereomers differing by the position of their methoxy signal. The pure less soluble diastereomer (54) reacts with methylmagnesium iodide to give a tetraorganotin compound containing only one chiral center, the asymmetric tin atom 36> 87>. [Pg.76]

This chapter has reported the only extensive and coordinated investigation of the effects of chirality on the properties of monolayer films spread at the air-water interface. Twenty compounds of varied headgroup and chain length have been examined carrying one and two chiral centers. In every case, all of the optical isomers—enantiomers and diastereomers—were made and their properties measured both as pure compounds and as mixed monolayers in order to compare phase changes in the films with mixed melting points of the crystals. [Pg.133]

In a similar way, a mixture consisting of 2% boron trifluoride etherate in trifluoroacetic acid and triethylsilane brings about the regioselective reduction of the acyclic carbonyl group of the diketovinyl chloride shown in Eq. 215 in high yield (>94%), but with formation of approximately equal amounts of the two possible diastereomers formed from the creation of a new chiral center.396... [Pg.77]

Diastereoisomer Stereoisomers with two or more chiral centers and where the molecules are not mirror images of one another, for example, d-erythrose and D-threose often contracted to diastereomer. [Pg.63]

The cathodic reduction of ketones ( )-RCHMeC(0)R (R = Ph, R = Ph, Me R = cyclohexyl, R = Me) afforded mixtures of diastereomeric alcohols. The origin of the diastereoselectivity, which depends on R and R and the electrolysis conditions, is discussed [333]. Acyclic and cyclic ketones with a chiral center in the fi-position yielded diastereomers in a ratio different from that obtained by LiAlH4-reduction [334]. [Pg.436]


See other pages where Diastereomers with chirality centers is mentioned: [Pg.344]    [Pg.1082]    [Pg.60]    [Pg.26]    [Pg.20]    [Pg.122]    [Pg.305]    [Pg.650]    [Pg.287]    [Pg.147]    [Pg.157]    [Pg.1015]    [Pg.480]    [Pg.482]    [Pg.455]    [Pg.963]    [Pg.315]    [Pg.165]    [Pg.266]    [Pg.103]    [Pg.27]    [Pg.205]    [Pg.361]    [Pg.407]    [Pg.969]    [Pg.90]    [Pg.183]    [Pg.421]    [Pg.79]   
See also in sourсe #XX -- [ Pg.196 ]




SEARCH



Chiral center

Chirality center

Chirality center centers

Chirality diastereomers

Diastereomer

Diastereomers

Diastereomers center

Molecules with More Than One Chiral Center. Diastereomers

© 2024 chempedia.info