Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

1.2- diastereocontrol

A key intermediate, 163, which possesses all but one chiral center of (+ )-brefeldin, has been prepared by the enantiocontrolled cycloaddition of the chiral fi,/3-unsaturated ester 162 to 154[107], Synthesis of phyllocladane skeleton 165 has been carried out by the Pd-catalyzed cycloaddition of the unsaturated diester 164 and cobalt-catalyzed cycloaddition of alkynes as key reactions[108]. Intramolecular cycloaddition to the vinylsulfone in 166 proceeds smoothly to give a mixture of the trans and cis isomers in a ratio of 2.4 1[109], Diastereocontrolled cycloaddition of the hindered vinylsulfone 167 affords a single stereoisomeric adduct, 168, which is used for the synthesis of the spirocarbocyclic ring of ginkgolide[l 10],... [Pg.313]

The most valuable characteristic of the Patemo-Buchi reaction is the ability to set multiple stereocenters in one reaction and the development of diastereocontrolled reactions has been a major theme of research concerning this reaction. Stereocontrol can be envisioned to spring from either the carbonyl or the alkene and be controlled by either the substrate directly or by a chiral auxiliary. Little success has been achieved in substrate-induced selection by the carbonyl the most successful results were produced by... [Pg.46]

Racemic cw-9,10 or trans-11,12 substituted ring systems are obtained in many instances high diastereocontrol is found. [Pg.956]

When enantiomerically pure allyl p-tolyl sulfoxide is deprotonated and then treated with electrophilic 2-cyclopentenone, a conjugate addition occurs forming a new carbon-carbon bond with very high control of absolute stereochemistry (equation 25)65. See also Reference 48. Similarly, using more substituted enantiomerically pure allylic sulfoxides leads to virtually complete diastereocontrol, as exemplified by equations 26 and 27 the double bond geometry in the initial allylic sulfoxide governs the stereochemistry at the newly allylic carbon atom (compare equations 26 vs. 27)66. Haynes and associates67 rationalize this stereochemical result in terms of frontier molecular orbital considerations... [Pg.834]

An efficient two-step annelation of functionalized orthoesters with trimethyl-silyloxyfuran derivatives has been reported that produces bicyclo[3. .0]lactones. ° The reaction in Scheme 7 shows an example in which the initial condensation between silyl enol ether and orthoester is followed by the radical cyclization reaction under standard conditions. It is worth underlining the complete diastereocontrol in which three contiguous stereocenters are generated in one step with >95% stereoselectivity. [Pg.139]

High levels of diastereocontrol in an ISOC reaction were induced by a stereogenic carbon center that bears a Si substituent (Scheme 23) [55]. For instance, conversion of nitro alkenes (e.g., 199) to j3-siloxyketones (e.g., 203) has been accomplished via a key ISOC reaction-reduction sequence with complete control of 1,5-relative stereochemistry. The generality of the ISOC reaction of a silyl nitronate with a vinylsilane was demonstrated with seven other examples. Corresponding INOC reaction proceeded with lower stereoselectivity. [Pg.29]

Addition of such a-lithiosulfinyl carbanions to aldehydes could proceed with asymmetric induction at the newly formed carbinol functionality. One study of this process, including variation of solvent, reaction temperature, base used for deprotonation, structure of aldehyde, and various metal salts additives (e.g., MgBrj, AlMej, ZnClj, Cul), has shown only about 20-25% asymmetric induction (equation 22) . Another study, however, has been much more successful Solladie and Moine obtain the highly diastereocontrolled aldol-type condensation as shown in equation 23, in which dias-tereomer 24 is the only observed product, isolated in 75% yield This intermediate is then transformed stereospecifically via a sulfoxide-assisted intramolecular 8, 2 process into formylchromene 25, which is a valuable chiron precursor to enantiomerically pure a-Tocopherol (Vitamin E, 26). [Pg.833]

The etherification between alcohol 10 and imidate 67 was one of the key transformations in the successful preparation of compound 1. The use of HBF4 as the catalyst for the etherification was crucial for obtaining high levels of diastereose-lectivity and relatively high conversion to the desired product 18. The fact that sec-sec ethers have rarely, if ever, been obtained with high levels of diastereocontrol in Sn2 fashion under typical SN1 reaction conditions prompted us to investigate the complex mechanistic details of this exceptional reaction. [Pg.214]

The zirconocene catalysts described above are very oxophilic, which provides several synthetically useful transformations. Oxygen substitution at the al-lylic or homoallylic position of an olefin substrate allows for excellent regio-and diastereocontrol in the ethyl magnesiation reactions of a-olefins and dienes [21]. When 29 is substituted with a hydroxyl group (29a), syn 30a is favored over anti in a 95 5 ratio, while substitution with OCH3 (29b) reversed the diastereoselectivity to 11 89 (Eq. 6). Use of THF in place of diethyl ether as the reaction solvent for the reaction of 29a lowered the overall diastereo-... [Pg.223]

Nagao, Y., Hagiwara, Y., Kumagai, T., Ochiai, M., Inoue, T., Hashimoto, K., and Fujita, E. (1986). New C4-chiral l,2-thiazolidine-2-thiones Excellent chiral auxiliaries for highly diastereocontrolled aldol-type reactions of acetic acid and a,b-unsaturated aldehydes. J. Org. Chem. 51, 2391-2393. [Pg.353]

An enantioselective organocatalytic 1,3-DC reaction, based on the activation of a,fi-unsaturated aldehydes through the reversible formation of iminium ions with chiral imidazolidinones 100, was described. Good levels of asymmetric induction and diastereocontrol were achieved (up to 94% ee and 94 6 dr) <00JA9874>. [Pg.223]

Du Bois originally used rhodium(n) acetate and rhodium triphenylacetate (tpa) as catalysts and found that regio-and diastereocontrol was influenced by the catalysts, but neither was particularly effective when low catalyst loadings were used. Inspired by the bridged dirhodium catalysts which have been developed for carbenoid chemistry,40,273,274 a second generation catalyst Rh2(esp)2 116 (esp = a,a,a, o -tetramethyl-l,3-benzenedipropionate) was designed which was capable of much higher turnover numbers (Scheme ll).275 Furthermore, this catalyst was effective in intermolecular reactions. [Pg.203]

A single example of the reductive cyclization of allenic carbonyl compounds is reported, which employs a rhodium-based catalyst in conjunction with Et3SiH as terminal reductant.113 This protocol promotes hydrosilylation-cyclization to form both five- and six-membered rings with exceptional levels of yy -diastereocontrol. As revealed... [Pg.527]

The preference for the /3-silyl isomer product complements methods available for hydrostannation of alkynes, for which the a-stannyl regioisomer is formed preferentially.70 7011 70c In addition, the /3-silyl products serve as the platform for a tertiary alcohol synthesis (Scheme 15). Upon treatment of vinylsilanes such as B with tetrabutylam-monium fluoride (TBAF) in DMF at 0 °C, a 1,2 carbon-to-silicon migration occurs, affording the tertiary heterosilane E. Oxidation of the C-Si bond then provides the tertiary alcohol. Good 1,2-diastereocontrol has been demonstrated for y-alkoxy substrates, as in the example shown. The studies suggest that the oxidation of the sterically demanding silane intermediate is facilitated by the intramolecular formation of a silyl hemiketal or silyllactone for ketone or ester substrates, respectively.71... [Pg.803]

Unlike the catalytic epoxidation or aziridination reactions of simple alkenes, where enantiocontrol is the only stereochemical differentiation, synthetically effective intermolecular cyclopropanation requires both diastereocontrol and enantiocontrol. High diastereoselectivity for the trans-isomer can be achieved with the use of bulky diazoacetates such as BDA" 187 or DCM97 188. [Pg.315]

Closely related to both allyl carbenoids and the allenyl carbenoids discussed above, propargyl carbenoids 101 are readily generated in situ and insert into zirconacycles to afford species 102 (Scheme 3.27), which are closely related to species 84 derived from allenyl carbenoids [65], Protonation affords a mixture of allene and alkyne products, but the Lewis acid assisted addition of aldehydes is regioselective and affords the homopropargylic alcohol products 103 in high yield. Bicydic zirconacyclopentenes react similarly, but there is little diastereocontrol from the ring junction to the newly formed stereocenters. The r 3-propargyl complexes derived from saturated zirconacycles are inert towards aldehyde addition. [Pg.98]

Cycloaddition. Recently )V-vinyloxazol id i nones were presented as new potential chiral dienophiles in inverse hetero-Diels-Alder reactions to activated 1-oxabutadienes, leading with high diastereocontrol to heteroadducts under Eu(fod)3-catalyzed conditions (Scheme 49).17... [Pg.151]

The requirements for new glycosylation methods outlined at the beginning of this chapter, namely convenient diastereocontrolled anomeric O-ac-tivation (first step) and subsequent efficient diasterecontrolled glycosylation promoted by genuinely catalytic amounts of a catalyst (second step), are essentially completely fulfilled by the trichloroacetimidate method. This is clearly shown by the many examples and references given in this article. In terms of stability, reactivity, and applicability toward different acceptors, the... [Pg.116]

Scheme 11.16 Diastereocontrol via chelate effect stereoselective 5-exo-trig cyclization on to a cumulated Jt-bond of a chelated ester-substituted ketyl radical anion 50 [74]. a 94 6 mixture of diastereomers. Scheme 11.16 Diastereocontrol via chelate effect stereoselective 5-exo-trig cyclization on to a cumulated Jt-bond of a chelated ester-substituted ketyl radical anion 50 [74]. a 94 6 mixture of diastereomers.
A good diastereocontrol is obtained for the debromination of Reaction (4.14) and it is attributed to the bulky reducing agent, which approaches the radical intermediate from the less hindered face anti to the two vicinal substituents [35]. [Pg.57]

The skeleton of 47 is a heterocyclic tricyclo[6.2.0.0 ]decane and the similarity to the tricyclic kelsoene is obvious. In the course of the above-mentioned studies we had become curious whether the high facial diastereocontrol in the photocycloaddition reaction could be extended to other bridged 1,6-hexadienes. Kelsoene was an ideal test case. The retrosynthetic strategy for kelsoene along an intramolecular [2+2]-photocycloaddition pathway appeared straightforward. To avoid chemoselectivity problems the precursor to kelsoene should not contain additional double bonds. Alcohol 48, the hydroxy group of which was possibly to be protected, seemed to be a suitable substrate for the photocycloaddition (Scheme 14). Access to the 1,2,3-substi-... [Pg.14]

Miscellaneous Iminium Catalyzed Transformations The enantioselective construction of three-membered hetero- or carbocyclic ring systems is an important objective for practitioners of chemical synthesis in academic and industrial settings. To date, important advances have been made in the iminium activation realm, which enable asymmetric entry to a-formyl cyclopropanes and epoxides. In terms of cyclopropane synthesis, a new class of iminium catalyst has been introduced, providing the enantioselective stepwise [2 + 1] union of sulfonium ylides and ot,p-unsaturated aldehydes.As shown in Scheme 11.6a, the zwitterionic hydro-indoline-derived catalyst (19) enables both iminium geometry control and directed electrostatic activation of sulfonium ylides in proximity to the incipient iminium reaction partner. This combination of geometric and stereoelectronic effects has been proposed as being essential for enantio- and diastereocontrol in forming two of the three cyclopropyl bonds. [Pg.325]


See other pages where 1.2- diastereocontrol is mentioned: [Pg.14]    [Pg.833]    [Pg.322]    [Pg.108]    [Pg.143]    [Pg.276]    [Pg.285]    [Pg.209]    [Pg.216]    [Pg.223]    [Pg.34]    [Pg.292]    [Pg.174]    [Pg.188]    [Pg.192]    [Pg.519]    [Pg.530]    [Pg.803]    [Pg.98]    [Pg.96]    [Pg.186]    [Pg.148]    [Pg.151]    [Pg.450]    [Pg.61]    [Pg.1079]    [Pg.122]   
See also in sourсe #XX -- [ Pg.107 ]

See also in sourсe #XX -- [ Pg.204 ]




SEARCH



Diastereocontrol in Olefin Metathesis the Development of Z-Selective Ruthenium Catalysts

Diastereocontrol, olefin metathesis

Diastereocontrolled aldol reactions

Diastereocontrolled approach

Ethers diastereocontrol

External reagents, 1,3-dipolar cycloaddition diastereocontrol

Intramolecular diastereocontrol

© 2024 chempedia.info