Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Density functional theory properties

The statistical mechanical approach, density functional theory, allows description of the solid-liquid interface based on knowledge of the liquid properties [60, 61], This approach has been applied to the solid-liquid interface for hard spheres where experimental data on colloidal suspensions and theory [62] both indicate 0.6 this... [Pg.62]

Massobrio C, Pasquarello A and Corso A D 1998 Structural and electronic properties of small Cu clusters using generalized-gradient approximations within density functional theory J. Chem. Phys. 109 6626... [Pg.2404]

Within the periodic Hartree-Fock approach it is possible to incorporate many of the variants that we have discussed, such as LFHF or RHF. Density functional theory can also be used. I his makes it possible to compare the results obtained from these variants. Whilst density functional theory is more widely used for solid-state applications, there are certain types of problem that are currently more amenable to the Hartree-Fock method. Of particular ii. Icvance here are systems containing unpaired electrons, two recent examples being the clci tronic and magnetic properties of nickel oxide and alkaline earth oxides doped with alkali metal ions (Li in CaO) [Dovesi et al. 2000]. [Pg.165]

Ah initio methods are applicable to the widest variety of property calculations. Many typical organic molecules can now be modeled with ah initio methods, such as Flartree-Fock, density functional theory, and Moller Plesset perturbation theory. Organic molecule calculations are made easier by the fact that most organic molecules have singlet spin ground states. Organics are the systems for which sophisticated properties, such as NMR chemical shifts and nonlinear optical properties, can be calculated most accurately. [Pg.284]

The optimised interlayer distance of a concentric bilayered CNT by density-functional theory treatment was calculated to be 3.39 A [23] compared with the experimental value of 3.4 A [24]. Modification of the electronic structure (especially metallic state) due to the inner tube has been examined for two kinds of models of concentric bilayered CNT, (5, 5)-(10, 10) and (9, 0)-(18, 0), in the framework of the Huckel-type treatment [25]. The stacked layer patterns considered are illustrated in Fig. 8. It has been predicted that metallic property would not change within this stacking mode due to symmetry reason, which is almost similar to the case in the interlayer interaction of two graphene sheets [26]. Moreover, in the three-dimensional graphite, the interlayer distance of which is 3.35 A [27], there is only a slight overlapping (0.03-0.04 eV) of the HO and the LU bands at the Fermi level of a sheet of graphite plane [28,29],... [Pg.47]

In 1985 Car and Parrinello invented a method [111-113] in which molecular dynamics (MD) methods are combined with first-principles computations such that the interatomic forces due to the electronic degrees of freedom are computed by density functional theory [114-116] and the statistical properties by the MD method. This method and related ab initio simulations have been successfully applied to carbon [117], silicon [118-120], copper [121], surface reconstruction [122-128], atomic clusters [129-133], molecular crystals [134], the epitaxial growth of metals [135-140], and many other systems for a review see Ref. 113. [Pg.82]

Ab initio molecular orbital theory is concerned with predicting the properties of atomic and molecular systems. It is based upon the fundamental laws of quantum mechanics and uses a variety of mathematical transformation and approximation techniques to solve the fundamental equations. This appendix provides an introductory overview of the theory underlying ab initio electronic structure methods. The final section provides a similar overview of the theory underlying Density Functional Theory methods. [Pg.253]

Allen GC, Warren KD (1974) The Electronic Spectra of the Hexafluoro Complexes of the Second and Third Transition Series. 19 105-165 Alonso JA, Baibas LC (1993) Hardness of Metallic Clusters. 80 229-258 Alonso JA, Baibas LC (1987) Simple Density Functional Theory of the Electronegativity and Other Related Properties of Atoms and Ions. 66 41-78 Andersson LA, Dawson JH (1991) EXAFS Spectroscopy of Heme-Containing Oxygenases and Peroxidases. 74 1-40 Antanaitis BC, see Doi K (1988) 70 1-26... [Pg.241]

Chattaraj PK, Parr RG (1993) Density Functional Theory of Chemical Hardness. 80 11-26 Cheh AM, Neilands JP (1976) The j -Aminoevulinate Dehydratases Molecular and Environmental Properties. 29 123-169 Chimiak A, Neilands JB (1984) Lysine Analogues of Siderophores. 58 89-96 Christensen JJ, see Izatt RM (1973) 16 161-189... [Pg.243]

The molecular interpretation of major topics in catalytic kinetics will be highlighted based on insights on the properties of transition-state intermediates as deduced from computational chemical density functional theory (DFT) calculations. [Pg.2]

In the Hartree-Fock approach, the many-body wave function in form of a Slater determinant plays the key role in the theory. For instance, the Hartree-Fock equations are derived by minimization of the total energy expressed in terms of this determinantal wave function. In density functional theory (3,4), the fundamental role is taken over by an observable quantity, the electron density. An important theorem of density functional theory states that the correct ground state density, n(r), determines rigorously all electronic properties of the system, in particular its total energy. The totd energy of a system can be expressed as a functional of the density n (r) and this functional, E[n (r)], is minimized by the ground state density. [Pg.50]

It is also of interest to study the "inverse" problem. If something is known about the symmetry properties of the density or the (first order) density matrix, what can be said about the symmetry properties of the corresponding wave functions In a one electron problem the effective Hamiltonian is constructed either from the density [in density functional theories] or from the full first order density matrix [in Hartree-Fock type theories]. If the density or density matrix is invariant under all the operations of a space CToup, the effective one electron Hamiltonian commutes with all those elements. Consequently the eigenfunctions of the Hamiltonian transform under these operations according to the irreducible representations of the space group. We have a scheme which is selfconsistent with respect to symmetty. [Pg.134]

In density functional theories the potential is determined by the density, and consequently its Fourier components are related to those of the density. One can therefore connect the symmetry properties of the momentum funetions, in other words the transformation... [Pg.137]

Suzumura, T., Nakajima, T. and Hirao, K. (1999) Ground-state properties of MH, MCI, and M2 (M—Cu, Ag, and Au) calculated by a scalar relativistic density functional theory International Journal of Quantum Chemistry, 75, lVJ-1. ... [Pg.229]

Density Functional Theory (DFT) has shown that low-coordinated sites on the gold nanoparticles can adsorb small inorganic molecules such as O2 and CO, and the presence of these sites is the key factor for the catal5dic properties of supported gold nanoclusters. Other contributions, induced by the presence of the support, can provide parallel channels for the reaction and modulate the final efficiency of Au-based catalysts. Also these calculations extended for the adsorption of O and CO on flat and... [Pg.97]

Alonso, J. A., Baibas, L. C. Simple Density Functional Theory of the Electronegativity and Other Related Properties of Atoms and Ions. Vol. 66, pp. 41-78. [Pg.189]

Mossbauer Properties from Density Functional Theory... [Pg.150]


See other pages where Density functional theory properties is mentioned: [Pg.125]    [Pg.376]    [Pg.389]    [Pg.389]    [Pg.635]    [Pg.167]    [Pg.282]    [Pg.606]    [Pg.190]    [Pg.477]    [Pg.757]    [Pg.802]    [Pg.857]    [Pg.251]    [Pg.456]    [Pg.267]    [Pg.54]    [Pg.342]    [Pg.77]    [Pg.6]    [Pg.3]    [Pg.576]    [Pg.204]    [Pg.219]    [Pg.225]    [Pg.189]    [Pg.207]   


SEARCH



Conceptual density functional theory properties

Current density functional theory properties

Density function theory spin-dependent properties

Density functional theory activation properties

Density functional theory excited state properties

Density functional theory ground state properties

Density functional theory molecular properties

Density functional theory redox properties

Density functional theory thermochemical properties

Density-functional Perturbation Theory and the Calculation of Response Properties

Functional properties

Mossbauer Properties from Density Functional Theory

Property density function

Time dependent density functional theory properties

Topic 1.5. Application of Density Functional Theory to Chemical Properties and Reactivity

© 2024 chempedia.info