Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Density Functional Theory molecules

Parr R G and Yang W 1994 Density-Functional Theory of Atoms and Molecules (New York Oxford)... [Pg.52]

Kierlik E and Rosinberg M L 1993 Perturbation density functional theory for polyatomic fluids III application to hard chain molecules in slitlike pores J Chem. Phys. 100 1716... [Pg.2384]

To use direct dynamics for the study of non-adiabatic systems it is necessary to be able to efficiently and accurately calculate electronic wave functions for excited states. In recent years, density functional theory (DFT) has been gaining ground over traditional Hartree-Fock based SCF calculations for the treatment of the ground state of large molecules. Recent advances mean that so-called time-dependent DFT methods are now also being applied to excited states. Even so, at present, the best general methods for the treatment of the photochemistry of polyatomic organic molecules are MCSCF methods, of which the CASSCF method is particularly powerful. [Pg.299]

The application of density functional theory to isolated, organic molecules is still in relative infancy compared with the use of Hartree-Fock methods. There continues to be a steady stream of publications designed to assess the performance of the various approaches to DFT. As we have discussed there is a plethora of ways in which density functional theory can be implemented with different functional forms for the basis set (Gaussians, Slater type orbitals, or numerical), different expressions for the exchange and correlation contributions within the local density approximation, different expressions for the gradient corrections and different ways to solve the Kohn-Sham equations to achieve self-consistency. This contrasts with the situation for Hartree-Fock calculations, wlrich mostly use one of a series of tried and tested Gaussian basis sets and where there is a substantial body of literature to help choose the most appropriate method for incorporating post-Hartree-Fock methods, should that be desired. [Pg.157]

In formulating a mathematical representation of molecules, it is necessary to define a reference system that is defined as having zero energy. This zero of energy is different from one approximation to the next. For ah initio or density functional theory (DFT) methods, which model all the electrons in a system, zero energy corresponds to having all nuclei and electrons at an infinite distance from one another. Most semiempirical methods use a valence energy that cor-... [Pg.7]

Density Functional Theory of Molecules, Clusters, and Solids D. E. Ellis, Ed., Kluwer, Dordrecht (1995). [Pg.47]

Ah initio methods are applicable to the widest variety of property calculations. Many typical organic molecules can now be modeled with ah initio methods, such as Flartree-Fock, density functional theory, and Moller Plesset perturbation theory. Organic molecule calculations are made easier by the fact that most organic molecules have singlet spin ground states. Organics are the systems for which sophisticated properties, such as NMR chemical shifts and nonlinear optical properties, can be calculated most accurately. [Pg.284]

Another approach to calculating molecular geometry and energy is based on density functional theory (DFT). DFT focuses on the electron cloud corresponding to a molecule. The energy of a molecule is uniquely specified by the electron density functional. The calculation involves the construction of an expression for the electron density. The energy of the system is then expressed as... [Pg.59]

We win run this job on methane at the Hartree-Fock level using the 6-31G(d) basis our molecule specification is the result of a geometry optimization using the B3LYP Density Functional Theory method with the same basis set. This combination is cited... [Pg.21]

R. G. Parr and W. Yang, Density-functional theory of atoms and molecules (Oxford Univ. Press Oxford, 1989). [Pg.283]

Orlova et al. (2003) theoretically studied the mechanism of the firefly bioluminescence reaction on the basis of the hybrid density functional theory. According to their conclusion, changes in the color of light emission by rotating the two rings on the 2-2 axis is unlikely, whereas the participation of the enol-forms of oxyluciferin in bioluminescence is plausible but not essential to explain the multicolor emission. They predicted that the color of the bioluminescence depends on the polarization of the oxyluciferin molecule (at its OH and O-termini) in the microenvironment of the luciferase active site the... [Pg.18]

Only the structures of di- and trisulfane have been determined experimentally. For a number of other sulfanes structural information is available from theoretical calculations using either density functional theory or ab initio molecular orbital theory. In all cases the unbranched chain has been confirmed as the most stable structure but these chains can exist as different ro-tamers and, in some cases, as enantiomers. However, by theoretical methods information about the structures and stabilities of additional isomeric sul-fane molecules with branched sulfur chains and cluster-like structures was obtained which were identified as local minima on the potential energy hypersurface (see later). [Pg.108]


See other pages where Density Functional Theory molecules is mentioned: [Pg.376]    [Pg.389]    [Pg.389]    [Pg.11]    [Pg.146]    [Pg.180]    [Pg.631]    [Pg.327]    [Pg.329]    [Pg.190]    [Pg.2]    [Pg.5]    [Pg.61]    [Pg.289]    [Pg.6]    [Pg.171]    [Pg.16]    [Pg.203]    [Pg.54]    [Pg.313]    [Pg.66]    [Pg.3]    [Pg.354]    [Pg.255]    [Pg.263]   
See also in sourсe #XX -- [ Pg.95 ]




SEARCH



Density molecule

Functional molecules

Molecule function

Molecules theory

Solid state molecules density functional perturbation theory

Solid state molecules density functional theory

Water molecules density functional theory studies

© 2024 chempedia.info