Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Degrees of freedom atomic

EC-ALE is the combination of UPD and ALE. Atomic layers of a compound s component elements are deposited at underpotentials in a cycle, to directly form a compound. It is generally a more complex procedure than most of the compound electrodeposition methods described in section 2.4.2, requiring a cycle to form each monolayer of the compound. However, it is layer-by-layer growth, avoiding 3-D nucleation, and offering increased degrees of freedom, atomic level control, and promoting of epitaxy. [Pg.8]

In statistical mechanics (e.g. the theory of specific heats of gases) a degree of freedom means an independent mode of absorbing energy by movement of atoms. Thus a mon-... [Pg.127]

Although a diatomic molecule can produce only one vibration, this number increases with the number of atoms making up the molecule. For a molecule of N atoms, 3N-6 vibrations are possible. That corresponds to 3N degrees of freedom from which are subtracted 3 translational movements and 3 rotational movements for the overall molecule for which the energy is not quantified and corresponds to thermal energy. In reality, this number is most often reduced because of symmetry. Additionally, for a vibration to be active in the infrared, it must be accompanied by a variation in the molecule s dipole moment. [Pg.57]

Consider the collision of an atom (denoted A) with a diatomic molecule (denoted BC), with motion of the atoms constrained to occur along a line. In this case there are two important degrees of freedom, the distance R between the atom and the centre of mass of the diatomic, and the diatomic intemuclear distance r. The Flamiltonian in tenns of these coordinates is given by ... [Pg.970]

Often a degree of freedom moves very slowly for example, a heavy-atom coordinate. In that case, a plausible approach is to use a sudden approximation, i.e. fix that coordinate and do reduced dimensionality quantum-dynamics simulations on the remaining coordinates. A connnon application of this teclmique, in a three-dimensional case, is to fix the angle of approach to the target [120. 121] (see figure B3.4.14). [Pg.2311]

For chemically bound molecules, it is usual to analyse tlie vibrational energy levels in teniis of normal modes, a non-linear (or linear) molecule witli V atoms has 3 V - 6 (or 3 V - 5) vibrational degrees of freedom. There is a... [Pg.2444]

Colloidal particles can be seen as large, model atoms . In what follows we assume that particles with a typical radius <3 = lOO nm are studied, about lO times as large as atoms. Usually, the solvent is considered to be a homogeneous medium, characterized by bulk properties such as the density p and dielectric constant t. A full statistical mechanical description of the system would involve all colloid and solvent degrees of freedom, which tend to be intractable. Instead, the potential of mean force, V, is used, in which the interactions between colloidal particles are averaged over... [Pg.2667]

Election nuclear dynamics theory is a direct nonadiababc dynamics approach to molecular processes and uses an electi onic basis of atomic orbitals attached to dynamical centers, whose positions and momenta are dynamical variables. Although computationally intensive, this approach is general and has a systematic hierarchy of approximations when applied in an ab initio fashion. It can also be applied with semiempirical treatment of electronic degrees of freedom [4]. It is important to recognize that the reactants in this approach are not forced to follow a certain reaction path but for a given set of initial conditions the entire system evolves in time in a completely dynamical manner dictated by the inteiparbcle interactions. [Pg.223]

Unfortunately, the resources required for these numerically exact methods grow exponentially with the number of degrees of freedom in the system of interest. Without the use of clever algorithms to optimize the basis set used [106,107], this limits the range of systems treatable to 4-6 degrees of freedom (3-4 atoms). For larger systems, the MCTDH method [19,20,108] provides a... [Pg.259]

In special cases (as in colloidal solutions) some particles can be considered as essential and other particles as irrelevant , but in most cases the essential space will itself consist of collective degrees of freedom. A reaction coordinate for a chemical reaction is an example where not a particle, but some function of the distance between atoms is considered. In a simulation of the permeability of a lipid bilayer membrane for water [132] the reaction coordinate was taken as the distance, in the direction perpendicular to the bilayer, between the center of mass of a water molecule and the center of mass of the rest of the system. In proteins (see below) a few collective degrees of freedom involving all atoms of the molecule, describe almost all the... [Pg.20]

The errors in the present stochastic path formalism reflect short time information rather than long time information. Short time data are easier to extract from atomically detailed simulations. We set the second moment of the errors in the trajectory - [Pg.274]

Spanned by tbc atoms 4, 2, and 1, and 2, 1, and 3 (tlic ry-planc), Except of the first three atoms, each atom is described by a set of three internal coordinates a distance from a previously defined atom, the bond angle formed by the atom with two previous atoms, and the torsion angle of the atom with three previous atoms. A total of 3/V - 6 internal coordinates, where N is the number of atoms in the molecule, is required to represent a chemical structure properly in 3D space. The number (,3N - 6) of internal coordinates also corresponds to the number of degrees of freedom of the molecule. [Pg.94]


See other pages where Degrees of freedom atomic is mentioned: [Pg.21]    [Pg.139]    [Pg.2049]    [Pg.139]    [Pg.21]    [Pg.139]    [Pg.2049]    [Pg.139]    [Pg.127]    [Pg.58]    [Pg.74]    [Pg.606]    [Pg.799]    [Pg.970]    [Pg.973]    [Pg.2048]    [Pg.2061]    [Pg.2253]    [Pg.2275]    [Pg.2363]    [Pg.2467]    [Pg.2667]    [Pg.2861]    [Pg.2885]    [Pg.2997]    [Pg.75]    [Pg.180]    [Pg.221]    [Pg.3]    [Pg.78]    [Pg.92]    [Pg.138]    [Pg.158]    [Pg.160]    [Pg.299]    [Pg.336]    [Pg.366]    [Pg.367]    [Pg.98]    [Pg.310]   
See also in sourсe #XX -- [ Pg.110 , Pg.122 , Pg.123 , Pg.125 ]




SEARCH



Atoms degrees of freedom

Atoms degrees of freedom

Degree of freedom

Freedom, degrees

© 2024 chempedia.info