Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Decomposition reactions kinetics

In many gaseous state reactions of technological importance, short-lived intermediate molecules which are formed by die decomposition of reacting species play a significant role in die reaction kinetics. Thus reactions involving die mediane molecule, CH4, show die presence of a well-defined dissociation product, CH3, die mediyl radical, which has a finite lifetime as a separate entity and which plays an important part in a sequence or chain of chemical reactions. [Pg.42]

Solomon, Kinetics of Synthesis and Decomposition Reactions of Ionic Compounds Containing N-F Cations , Illinois Institute of Technology Research Institute, IITRI C-6140 (Jan 1969), AD-682497, p 5 CA 77, 131206 (1972)... [Pg.310]

The Avrami—Erofe ev equation, eqn. (6), has been successfully used in kinetic analyses of many solid phase decomposition reactions examples are given in Chaps. 4 and 5. For no substance, however, has this expression been more comprehensively applied than in the decomposition of ammonium perchlorate. The value of n for the low temperature reaction of large crystals [268] is reduced at a 0.2 from 4 to 3, corresponding to the completion of nucleation. More recently, the same rate process has been the subject of a particularly detailed and rigorous re-analysis by Jacobs and Ng [452] who used a computer to optimize curve fitting. The main reaction (0.01 < a < 1.0) was well described by the exact Avrami equation, eqn. (4), and kinetic interpretation also included an examination of the rates of development and of multiplication of nuclei during the induction period (a < 0.01). The complete kinetic expressions required to describe quantitatively the overall reaction required a total of ten parameters. [Pg.59]

Kinetic expressions for appropriate models of nucleation and diffusion-controlled growth processes can be developed by the methods described in Sect. 3.1, with the necessary modification that, here, interface advance obeys the parabolic law [i.e. is proportional to (Dt),/2]. (This contrasts with the linear rate of interface advance characteristic of decomposition reactions.) Such an analysis has been provided by Hulbert [77], who considers the possibilities that nucleation is (i) instantaneous (0 = 0), (ii) constant (0 = 1) and (iii) deceleratory (0 < 0 < 1), for nuclei which grow in one, two or three dimensions (X = 1, 2 or 3, respectively). All expressions found are of the general form... [Pg.71]

A comprehensive and detailed review of the literature relating to the decomposition reactions of the salts of halogen oxyacids has recently been given by Solymosi [1279], This book discusses many aspects of the chemical characteristics of this group of compounds. It includes a large amount of kinetic data and provides access to the original publications. [Pg.186]

The grouping of ammonium salts in a separate section serves to emphasize the similarities of behaviour which are apparent in reactions yielding the volatile NH3 molecule, following removal of a proton from the NH4 cation. This property is not unique indeed, many cations are volatile and numerous salts leave no residue on completion of decomposition. Few kinetic investigations have, however, been reported for other compounds, in contrast to the extensive and detailed rate measurements which have been published for solid phase decompositions of many ammonium salts. Comparisons with the metal salts containing the same anion are sometimes productive, so that no single method of classification is altogether satisfactory. [Pg.195]

The thermal reactions of CaC204 H20 have been very fully investigated and this substance has been used as a thermal analysis reference material [1058], Dehydration, decomposition to the carbonate, and dissociation to CaO are all well separated, though kinetic characteristics are influenced by the presence of C02, 02 and H20 as well as by the reaction conditions, including heating rate, sample size, and sample container. Kinetic parameters for the oxalate decomposition reaction have been summarized by Gurrieri et al. [1059]. Values of E are close to 314 8 kJ mole-1. Decompositions [1057,1060,1061] of Sr (643—743 K) and Ba (663—743 K) oxalates involves some disproportion of CO, yielding residual carbon. [Pg.219]


See other pages where Decomposition reactions kinetics is mentioned: [Pg.267]    [Pg.729]    [Pg.60]    [Pg.267]    [Pg.729]    [Pg.60]    [Pg.390]    [Pg.203]    [Pg.464]    [Pg.42]    [Pg.43]    [Pg.45]    [Pg.47]    [Pg.49]    [Pg.51]    [Pg.53]    [Pg.55]    [Pg.57]    [Pg.59]    [Pg.61]    [Pg.63]    [Pg.65]    [Pg.67]    [Pg.69]    [Pg.71]    [Pg.73]    [Pg.75]    [Pg.77]    [Pg.79]    [Pg.81]    [Pg.83]    [Pg.85]    [Pg.123]    [Pg.593]    [Pg.605]    [Pg.7]    [Pg.9]    [Pg.9]    [Pg.10]    [Pg.13]    [Pg.30]    [Pg.62]    [Pg.72]    [Pg.110]    [Pg.115]    [Pg.115]   
See also in sourсe #XX -- [ Pg.126 ]




SEARCH



Chemical reactions, kinetics thermal decomposition

Decomposition kinetics

Decomposition reactions

Decomposition, quantitative reaction kinetics

Gaseous reaction kinetics and molecular decomposition

Surface reaction kinetics unimolecular decomposition

© 2024 chempedia.info