Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Decarboxylative Michael reaction

The addition of active methylene compounds (ethyl malonate, ethyl aoeto-acetate, ethyl plienylacetate, nltromethane, acrylonitrile, etc.) to the aP-double bond of a conjugated unsaturated ketone, ester or nitrile In the presence of a basic catalyst (sodium ethoxide, piperidine, diethylamiiie, etc.) is known as the Michael reaction or Michael addition. The reaction may be illustrated by the addition of ethyl malonate to ethyl fumarate in the presence of sodium ethoxide hydrolysis and decarboxylation of the addendum (ethyl propane-1 1 2 3-tetracarboxylate) yields trlcarballylic acid ... [Pg.912]

Michael reactions and, 895 Beta-keto ester, 851 alkylation of, 859-860 cyclic, 892-893 decarboxylation of, 857, 860 Michael reactions and. 895 pKd of, 852 synthesis of, 892-893 Beta-lactam antibiotics, 824-825 Beta oxidation pathway, 1133-1137 mechanism of, 1133-1136 Beta-pleated sheet (protein), 1038 molecular model of, 1039 secondary protein structure and, 1038-1039 Betaine, 720 Bextra. structure of, 544 BHA, synthesis of, 629 BHT, synthesis of. 629 Bicycloalkane. 129 Bijvoet. J. M., 299 Bimolecular, 363... [Pg.1288]

One of the best methods to synthesize cyclopentenone derivatives is the Pauson-Khand procedure. However, Shindo s group have recently developed a domino process consisting of a [2+2] cycloaddition of a ketone with anynolate, followed by a Dieckmann condensation to give a 3-lactone as 4-190 which is decarboxylated under reflux in toluene in the presence of silica gel to afford cyclopentenones [64a]. Thus, the reaction of 4-188 and 4-189 led to 4-190, which on heating furnished the linear cucumin 4-191 (Scheme 4.41). This natural product has been isolated from the mycelial cultures of the agaric Macrocystidia cucumis [65, 66]. The domino procedure described was also used to synthesize dihydrojasmone and a-cuparenone. Moreover, the [2+2] cycloaddition can be combined with a Michael reaction [64b]. [Pg.307]

Michael additions to acceptor-substituted dienes are often followed by (spontaneous or induced) cyclizations. This was already noted by Vorlander and Groebel4 who obtained a substituted 1,3-cyclohexanedione by treatment of 6-phenyl-3,5-hexadien-2-one with diethyl malonate (equation 5). Obviously, the 1,4-addition product which is formed initially then undergoes cyclization, ester hydrolysis and decarboxylation. Similarly, reaction of methyl sorbate with methyl 4-nitrobutyrate gave the 1,6-adduct which was reductively cyclized to 6-methyl-l-azabicyclo[5.3.0]decane18 (equation 6). [Pg.648]

If we combine decarboxylation with Michael reaction (frames 281-5) we get a general synthesis of 1,5—diketones ... [Pg.114]

The synthesis of 2,2-dimethylsuccinic acid (Expt 5.135) provides a further variant of the synthetic utility of the Knoevenagel-Michael reaction sequence. Ketones (e.g. acetone) do not readily undergo Knoevenagel reactions with malonic esters, but will condense readily in the presence of secondary amines with the more reactive ethyl cyanoacetate to give an a, /f-unsaturated cyanoester (e.g. 15). When treated with ethanolic potassium cyanide the cyanoester (15) undergoes addition of cyanide ion in the Michael manner to give a dicyanoester (16) which on hydrolysis and decarboxylation affords 2,2-dimethylsuccinic acid. [Pg.682]

Musso has reported the synthesis of diasterane (tricyclo-[3.1.1.I2 4]octane) 15. For this first member of the series of asteranes, the decarboxylation of 16b -> 16c was best achieved via the photolysis of the Barton ester of 16a in the presence of BuSH, as shown in Scheme 5.14 Fukumoto has accomplished asymmetric total synthesis of atisine 17, where the bridged pentacyclic intermediate 18, a precursor for atisine, was synthesized via an intramolecular double Michael reaction starting with 19, Scheme 6.15 Barton protocol was favored during the late stages of the synthesis and the presence of various functionalities was easily accommodated. [Pg.96]

In PLP-dependent enzymatic reactions, the Schiff base formed by reaction of the substrate with PLP provides an electron sink for stabilization of the negative charge that results from the bond-breaking process required in the reaction (racemization, decarboxylation, aldol reaction, elimination, etc.). The elegant work of Walsh and coworkers provided evidence that, subsequent to Schiff base formation, a common intermediate is formed from several different alanine analogues that are alanine racemase inhibitors. From this they proposed the elimination-Michael addition sequence shown in Figure 14 as the mechanism for inhibition166. [Pg.1528]

In the same way, electrophilic reactions can be applied to the tandem reaction. The ynolate-initiated tandem [2 + 2] cycloaddition-Michael reaction followed by decarboxylation furnished the polysubstituted five-, six- and seven-membered cycloalkenes in good overall yield (equation 33) . The ester enolate intermediates 77 are nucleophilic, and further bond formation is possible. [Pg.754]

A key step in the synthesis of the simple aromatic bisphenol tetrangulol (3) by Brown and Thomson [18] was a Michael-type cyclization of a phenol to the chloronaphthoquinone moiety (Scheme 3). The starting material 8, connecting the naphthoquinone and the protected phenol, was prepared by an interesting radical alkylation of the chloronaphthoquinone 6 with a carboxylic acid 7 in the presence of silver ions and persulfate with concomitant decarboxylation (Torsell reaction [19]) to yield the dihydrobenzo[a]anthraquinone 9. The synthesis of tetrangulol (3) was concluded by dehydrogenation in boiling nitrobenzene. [Pg.130]

Retro-aldol and retro-Michael reactions occur under acidic conditions. The mechanisms are the microscopic reverse of the aldol and Michael reactions, as you would expect. One of the most widely used acid-catalyzed retro-aldol reactions is the decarboxylation of jS-ketoacids, malonic acids, and the like. Protonation of a carbonyl group gives a carbocation that undergoes fragmentation to lose CO2 and give the product. Decarboxylation does not proceed under basic conditions because the carboxylate anion is much lower in energy than the enolate product. [Pg.140]

The epi-quinine urea 81b was also found by Wennemers to promote an asymmetric decarboxylation/Michael addition between thioester 143 and 124 to afford the product 144 in good yield and high enantioselectivity (up to 90% ee) (Scheme 9.49). Here, malonic acid half-thioesters serve as a thioester enolate (i.e., enolate Michael donors). This reaction mimics the polyketide synthase-catalyzed decarboxylative acylation reactions of CoA-bound malonic acid half-thiesters in the biosynthesis of fatty adds and polyketides. The authors suggested, analogously with the enzyme system, that the urea moiety is responsible for activating the deprotonated malonic add half-thioesters that, upon decarboxylation, read with the nitroolefin electrophile simultaneously activated by the protonated quinuclidine moiety (Figure 9.5) [42]. [Pg.279]

The utihty of Cu(II)-box complex 96 for asymmetric Mukaiyama-Michael reaction has been intensively studied by Evans et al. (Scheme 10.91) ]248]. In the presence of HFIP fhe 96-catalyzed reaction of S-t-butyl thioacetate TMS enolate with alkylidene malonates provides fhe Michael adducts in high chemical and optical yield. HFIP plays a crucial role in inducing catalyst turnover. Slow addition of the silyl enolate to a solution of 96, alkylidene malonates, and HFIP is important in achieving high yields, because fhe enolate is susceptible to protonolysis with HFIP in fhe presence of 96. The glutarate ester products are readily decarboxylated to provide chiral 1,5-dicarbonyl synthons. Quite recenfly, Sibi et al. reported enantioselective synthesis of t -amino acid derivatives by Cu( 11)-box-catalyzed conjugate addition of silyl enolates to aminomefhylenemalonates ]249]. [Pg.472]

Stevens chose to protect the aldehyde immediately after the Michael reaction to prevent side reactions on this reactive group, and to put in the amine by reductive amination (Chapter 8) using sodium cyanoborohydride as the reducing agent. Note the short cut of decarboxylation with NaCI in wet solvent (DMF or DMSO) when the ester, e.g. (13) is needed. [Pg.178]

Malonate and related activated methylene compounds have also been used as the nucleophile in conjugate addition/Michael reactions. Taylor and co-workers have developed a new methodology that utilizes (salen)aluminum complexes such as 43 as a catalyst to effect the enantioselective conjugate addition to a,p-unsaturated ketones by a variety of nucleophiles.25 For example, nitriles, nitroalkanes, hydrazoic acids, and azides have found utility in this reaction. Additionally, cyanoacetate (42) has been demonstrated to undergo a highly enantioselective conjugate addition to 41. The Krapcho decarboxylation is then necessary to produce cyanoketone 44, an intermediate in the synthesis of enantioenriched 2,4-cw-di substituted piperidine 45. [Pg.641]

Phenols have been condensed with alkenoylesters to give chromans by an oxa-Michael addition/electrophilic aromatic addition sequence with magnesium(II)- or copper(II)-bis-oxazoline complexes as chiral Lewis acid catalysts (Scheme 17b) [97]. This reaction may be initiated by an oxa-Michael reaction, followed by a hydroarylation of a carbonyl group. The authors suggest that the initial stereodetermining oxa-Michael addition is followed by a fast diastereoselective aromatic substimtion [97]. A nickel Lewis acid, derived from Ni(hfacac)2 (hfacac = 1,LL5,5,5-hexafluoro-3,5-dioxopentane enolate) and chiral Al-oxide ligands, catalyzes the enantioselective oxa-Michael cyclization of 2-tert-butyloxycarbonyl-2 -hydroxy-chalcones to 3-ferf-butoxycarbonyl flavanones, which can be decarboxylated to flavanons in a separate step (Scheme 17c) [98]. A Lewis acid activation of the unsaturated p-ketoester unit can be assumed. [Pg.140]

Example. Another important fi agmentation reaction is the decarboxylation of (3-keto acids invariably employed for synthesis in conjruiction with construction reactions, such as Michael Reaction (Addition, Condensation) i.e., addition of acetoacetic and malonate esters. [Pg.36]

Hydrogenation was carried out at O to minimize decarboxylation of the saturated 3-keto acid product 18. Mannich reaction proceeded with in situ decarboxylation to afford a-methylene ketone 19, which on Michael reaction with ketal 3 keto ester 20 -" yielded adduct 21. Saponification, B ring closure, and decarboxylation then led to ketalenone 23 in high yield, which was converted into ( + )-19-nortestosterone 24 and thence to ( + )-19-norandrostenedione 25 in 50% yield from 18 or 27% overall yield from 12. However, ketal hydrolysis, A ring closure, oxidation at C-17, and isomerization by the Roussel procedure (acetyl bromide-acetic anhydride in methylene chloride at 20°) should yield (-f )-estrone 26 efficiently. [Pg.7]


See other pages where Decarboxylative Michael reaction is mentioned: [Pg.31]    [Pg.206]    [Pg.1097]    [Pg.333]    [Pg.155]    [Pg.149]    [Pg.1097]    [Pg.29]    [Pg.665]    [Pg.296]    [Pg.53]    [Pg.455]    [Pg.130]    [Pg.380]    [Pg.183]   
See also in sourсe #XX -- [ Pg.21 ]

See also in sourсe #XX -- [ Pg.21 ]




SEARCH



Decarboxylation reactions

Reactions decarboxylative

© 2024 chempedia.info