Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Cytochrome bct complex

Figure 13.13 The structure of the yeast cytochrome bct complex (a) the homodimeric complex of the catalytic subunits cytochrome b (blue), Rieske protein (green) and cytochrome c, (yellow) with their cofactors and the six additional subunits. Part b shows the catalytic subunits of one functional unit in the same orientation. (From Hunte et al., 2000. Copyright 2003, with permission from Elsevier.)... Figure 13.13 The structure of the yeast cytochrome bct complex (a) the homodimeric complex of the catalytic subunits cytochrome b (blue), Rieske protein (green) and cytochrome c, (yellow) with their cofactors and the six additional subunits. Part b shows the catalytic subunits of one functional unit in the same orientation. (From Hunte et al., 2000. Copyright 2003, with permission from Elsevier.)...
E. Humpfer, L. Yu, C. A. Yu, C. Griesinger, U. Brandt, Three molecules of ubiquinone bind specifically to mitochondrial cytochrome bct complex, J. Biol. Chem., 2001, 276, 35231-35234. [Pg.293]

Many cytochromes c are soluble but others are bound to membranes or to other proteins. A well-studied tetraheme protein binds to the reaction centers of many purple and green bacteria and transfers electrons to those photosynthetic centers.118 120 Cytochrome c2 plays a similar role in Rhodobacter, forming a complex of known three-dimensional structure.121 Additional cytochromes participate in both cyclic and noncyclic electron transport in photosynthetic bacteria and algae (see Chapter 23).120,122 124 Some bacterial membranes as well as those of mitochondria contain a cytochrome bct complex whose structure is shown in Fig. 18-8.125,126... [Pg.847]

Complex III (ubiquinol-cytochrome c oxido-reductase or cytochrome bct complex). Mitochondrial complex III is a dimeric complex, each subunit of which contains 11 different subunits with a total molecular mass of 240 kDa per monomer.104-107 However, in many bacteria the complex consists of only three subunits, cytochrome b, cytochrome c , and the high potential ( 0.3 V) Rieske iron-sulfur protein, which is discussed in Chapter 16, Section A,7. These three proteins are present in all bc1 complexes. [Pg.1027]

V). The centers resemble PSII of chloroplasts and have a high midpoint electrode potential E° of 0.46 V. The initial electron acceptor is the Mg2+-free bacteriopheophytin (see Fig. 23-20) whose midpoint potential is -0.7 V. Electrons flow from reduced bacteriopheophytin to menaquinone or ubiquinone or both via a cytochrome bct complex, similar to that of mitochondria, then back to the reaction center P870. This is primarily a cyclic process coupled to ATP synthesis. Needed reducing equivalents can be formed by ATP-driven reverse electron transport involving electrons removed from succinate. Similarly, the purple sulfur bacteria can use electrons from H2S. [Pg.1301]

In purple photosynthetic bacteria, electrons return to P870+ from the quinones QA and QB via a cyclic pathway. When QB is reduced with two electrons, it picks up protons from the cytosol and diffuses to the cytochrome bct complex. Here it transfers one electron to an iron-sulfur protein and the other to a 6-type cytochrome and releases protons to the extracellular medium. The electron-transfer steps catalyzed by the cytochrome 6c, complex probably include a Q cycle similar to that catalyzed by complex III of the mitochondrial respiratory chain (see fig. 14.11). The c-type cytochrome that is reduced by the iron-sulfur protein in the cytochrome be, complex diffuses to the reaction center, where it either reduces P870+ directly or provides an electron to a bound cytochrome that reacts with P870+. In the Q cycle, four protons probably are pumped out of the cell for every two electrons that return to P870. This proton translocation creates an electrochemical potential gradient across the membrane. Protons move back into the cell through an ATP-synthase, driving the formation of ATP. [Pg.340]

If the reaction centers of photosystem I and photosystem II are segregated into separate regions of the thylakoid membrane, how can electrons move from photosystem I to photosystem II Evidently the plastoquinone that is reduced in photosystem II can diffuse rapidly in the membrane, just as ubiquinone does in the mitochondrial inner membrane. Plastoquinone thus carries electrons from photosystem II to the cytochrome b6f complex. Plastocyanin acts similarly as a mobile electron carrier from the cytochrome b f complex to the reaction center of photosystem I, just as cytochrome c carries electrons from the mitochondrial cytochrome bct complex to cytochrome oxidase and as a c-type cytochrome provides electrons to the reaction centers of purple bacteria (see fig. 15.13). [Pg.344]

Fig. 6.9 The catalysts for denitrification. Nitrate is reduced by a molybdenum enzyme while nitrite and oxides of nitrogen are reduced today mainly by copper enzymes. However, there are alternatives, probably earlier iron enzymes. The electron transfer bct complex is common to that in oxidative phosphorylation and similar to the bf complex of photosynthesis, while cytochrome c2 is to be compared with cytochrome c of oxidative phosphorylation. These four processes are linked in energy capture via proton (H+) gradients see Figure 6.8(a) and (b) and the lower parts of Fig. 6.9 which show separately the active site of the all iron NO-reductase, and the active site of cytochrome oxidase (02 reductase). Fig. 6.9 The catalysts for denitrification. Nitrate is reduced by a molybdenum enzyme while nitrite and oxides of nitrogen are reduced today mainly by copper enzymes. However, there are alternatives, probably earlier iron enzymes. The electron transfer bct complex is common to that in oxidative phosphorylation and similar to the bf complex of photosynthesis, while cytochrome c2 is to be compared with cytochrome c of oxidative phosphorylation. These four processes are linked in energy capture via proton (H+) gradients see Figure 6.8(a) and (b) and the lower parts of Fig. 6.9 which show separately the active site of the all iron NO-reductase, and the active site of cytochrome oxidase (02 reductase).
Cyanobacteria can synthesize ATP by oxidative phosphorylation or by photophosphorylation, although they have neither mitochondria nor chloroplasts. The enzymatic machinery for both processes is in a highly convoluted plasma membrane (see Fig. 1-6). Two protein components function in both processes (Fig. 19-55). The proton-pumping cytochrome b6f complex carries electrons from plastoquinone to cytochrome c6 in photosynthesis, and also carries electrons from ubiquinone to cytochrome c6 in oxidative phosphorylation—the role played by cytochrome bct in mitochondria. Cytochrome c6, homologous to mitochondrial cytochrome c, carries electrons from Complex III to Complex IV in cyanobacteria it can also carry electrons from the cytochrome b f complex to PSI—a role performed in plants by plastocyanin. We therefore see the functional homology between the cyanobacterial cytochrome b f complex and the mitochondrial cytochrome bc1 complex, and between cyanobacterial cytochrome c6 and plant plastocyanin. [Pg.738]

An unusual [2Fe-2S] ferredoxin with unique spectroscopic properties exists in association with cytochromes b and c, and is involved in respiratory electron transport in mitochondria, chloroplasts and certain bacteria. When isolated, the complex contains two b hemes, one c, heme and the 2Fe-2S protein. The 2Fe-2S protein from the bct complex (Sections 62.1.5.2.3 and 62.1.5.2.5) was purified from bovine mitochondria by Rieske et al.,162 and is referred to as the Rieske iron-sulfur protein. The properties of this protein have been reviewed763 and its topography in mitochondrial ubiquinol-cytochrome c reductase has been described.764 They have high redox potentials in the range+150-330 mV. [Pg.629]


See other pages where Cytochrome bct complex is mentioned: [Pg.312]    [Pg.347]    [Pg.312]    [Pg.347]   
See also in sourсe #XX -- [ Pg.651 , Pg.652 , Pg.653 , Pg.654 , Pg.655 , Pg.656 , Pg.657 , Pg.658 , Pg.659 , Pg.660 ]

See also in sourсe #XX -- [ Pg.1027 , Pg.1029 ]




SEARCH



Cytochrome bct

Cytochrome complex

© 2024 chempedia.info