Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Cyclopentene chiral

A conceptually surprising and new route to prostaglandins was found and evaluated by C.R. Johnson in 1988. It involves the simple idea to add alkenylcopper reagents stereo-selectively to a protected chiral 4,5-dihydroxy-2-cyclopenten-l-one and to complete the synthesis of the trisubstituted cyclopentanone by stereoselective allylation of the resulting enolate. [Pg.276]

Diacetates of 1,4-butenediol derivatives are useful for double allylation to give cyclic compounds. l,4-Diacetoxy-2-butene (126) reacts with the cyclohexanone enamine 125 to give bicyclo[4.3.1]decenone (127) and vinylbicy-clo[3.2.1]octanone (128)[85,86]. The reaction of the 3-ketoglutarate 130 with cij-cyclopentene-3,5-diacetate (129) affords the furan derivative 131 [87]. The C- and 0-allylations of ambident lithium [(phenylsulfonyl)methylene]nitronate (132) with 129 give isoxazoline-2-oxide 133, which is converted into c -3-hydroxy-4-cyanocyclopentene (134)[S8]. Similarly, chiral m-3-amino-4-hyd-roxycyclopentene was prepared by the cyclization of yV-tosylcarbamate[89]. [Pg.308]

Oxirane (1) and methyloxirane (3) are miscible with water, ethyloxirane is very soluble in water, while compounds such as cyclopentene oxide and higher oxiranes are essentially insoluble (B-73MI50501) (for a discussion of the solubilities of heterocycles, see (63PMH(l)l77)). Other physical properties of heterocycles, such as dipole moments and electrochemical properties, are discussed in various chapters of pmh. The optical activity of chiral oxiranes has been investigated by ab initio molecular orbital methods (8UA1023). [Pg.97]

Nair and co-workers have demonstrated NHC-catalysed formation of spirocyclic diketones 173 from a,P-unsaturated aldehydes 174 and snbstitnted dibenzylidine-cyclopentanones 175. Where chalcones and dibenzylidene cyclohexanones give only cyclopentene products (as a result of P-lactone formation then decarboxylation), cyclopentanones 175 give only the spirocychc diketone prodncts 173 [73]. Of particular note is the formation of an all-carbon quaternary centre and the excellent level of diastereoselectivity observed in the reaction. An asymmetric variant of this reaction has been demonstrated by Bode using chiral imidazolium salt 176, obtaining the desymmetrised product with good diastereo- and enantioselectivity, though in modest yield (Scheme 12.38) [74],... [Pg.283]

In order to establish the correct absolute stereochemistry in cyclopentanoid 123 (Scheme 10.11), a chirality transfer strategy was employed with aldehyde 117, obtained from (S)-(-)-limonene (Scheme 10.11). A modified procedure for the conversion of (S)-(-)-limonene to cyclopentene 117 (58 % from limonene) was used [58], and aldehyde 117 was reduced with diisobutylaluminium hydride (DIBAL) (quant.) and alkylated to provide tributylstannane ether 118. This compound underwent a Still-Wittig rearrangement upon treatment with n-butyl lithium (n-BuLi) to yield 119 (75 %, two steps) [59]. The extent to which the chirality transfer was successful was deemed quantitative on the basis of conversion of alcohol 119 to its (+)-(9-methyI mande I ic acid ester and subsequent analysis of optical purity. The ozonolysis (70 %) of 119, protection of the free alcohol as the silyl ether (85 %), and reduction of the ketone with DIBAL (quant.) gave alcohol 120. Elimination of the alcohol in 120 with phosphorus oxychloride-pyridine... [Pg.249]

The asymmetric allylic alkylation (AAA) reaction has been adapted for use with pyrrole nucleophiles <06JACS6054>. For example, treatment of pyrrole 55 and cyclopentene 56 with a palladium catalyst in the presence of a chiral additive gave pyrrole 57 in up to 92% ee. The latter was elaborated into piperazinone-pyrrole natural product, agelastatin A 94. [Pg.143]

In 1965, Denney et al. (98) reported the reaction of a number of alkenes with ferf-butyl hydroperoxide (TBHP) and cupric salts of chiral acids. The use of ethyl camphorate copper complex 144 in the allylic oxidation of cyclopentene provides, upon reduction of the camphorate ester, the allylic alcohol in low yield and low selectivity, Eq. 82. The initial publication only provided the observed rotation of cyclopentenol, but comparison to subsequent literature values (99) reveals that this reaction proceeds in 12% ee and 43% yield (based on the metal complex). [Pg.53]

Borchardt and coworkers (265) have employed the chiral cyclopenten-ones derived from aldonolactones for the synthesis of the analogue 302a of neplanocin A. Neplanocin A (302b) and aristeromycin (303), carbocyclic analogs of adenosine having antiviral and antitumor activities, have also been synthesized (277,278). [Pg.196]

Volume 75 concludes with six procedures for the preparation of valuable building blocks. The first, 6,7-DIHYDROCYCLOPENTA-l,3-DIOXIN-5(4H)-ONE, serves as an effective /3-keto vinyl cation equivalent when subjected to reductive and alkylative 1,3-carbonyl transpositions. 3-CYCLOPENTENE-l-CARBOXYLIC ACID, the second procedure in this series, is prepared via the reaction of dimethyl malonate and cis-l,4-dichloro-2-butene, followed by hydrolysis and decarboxylation. The use of tetrahaloarenes as diaryne equivalents for the potential construction of molecular belts, collars, and strips is demonstrated with the preparation of anti- and syn-l,4,5,8-TETRAHYDROANTHRACENE 1,4 5,8-DIEPOXIDES. Also of potential interest to the organic materials community is 8,8-DICYANOHEPTAFULVENE, prepared by the condensation of cycloheptatrienylium tetrafluoroborate with bromomalononitrile. The preparation of 2-PHENYL-l-PYRROLINE, an important heterocycle for the synthesis of a variety of alkaloids and pyrroloisoquinoline antidepressants, illustrates the utility of the inexpensive N-vinylpyrrolidin-2-one as an effective 3-aminopropyl carbanion equivalent. The final preparation in Volume 75, cis-4a(S), 8a(R)-PERHYDRO-6(2H)-ISOQUINOLINONES, il lustrates the conversion of quinine via oxidative degradation to meroquinene esters that are subsequently cyclized to N-acylated cis-perhydroisoquinolones and as such represent attractive building blocks now readily available in the pool of chiral substrates. [Pg.140]

Complexes of nickel(II) or magnesium(II) with the chiral ligand DBFOX (Scheme 8) catalyze the DCR of nitrones with a-alkyl- and arylacroleins rendering preferentially the 5-carbaldehyde cycloadducts. However, the reactions with a-bromoacrolein catalyzed by the zinc(II) complex of the same ligand afford isoxazoline -carbaldehydes. The corresponding cobalt(II) complex is also active for the cycloaddition between cyclopenten-l-carbaldehyde and diphenylnitrone. [Pg.213]

Hoveyda et al. reported a novel method for synthesizing of chromene 71 by ROM-RCM of cycloalkene 70 bearing the phenyl ether at the 3-position [Eq. (6.48)]." ° The yield is improved when the reaction is carried out under ethylene gas. In the case of cyclopentene 70a (n = 0) or cyclohexene 70b (n = 1), the yield is poor because the starting cycloalkene is in a state of equihbrium with the product and a thermodynamic product should be formed under these reaction conditions. They obtained enantiomeric ally pure cycloheptene derivative (5)-70e using zirconium-catalyzed kinetic resolution of 70e developed by their group, and chromene 71c was synthesized as a chiral form via ROM-RCM using lb [Eq. (6.49)] ... [Pg.171]

Enantioselective cyclic ether is synthesized by molybdenum-catalyzed olefin metathesis. Cyclopentene derivative 85a is reacted with 5 mol% of chiral molybdenum catalyst 76 to give pyran derivative 86a in high yield and high ee... [Pg.176]

The first example of Pd-catalyzed enantioselective allylation to be reported was the reaction of l-(l -acetoxyethyl)cyclopentene and the sodium salt of methyl benzenesulfonylacetate in the presence of 10 mol % of a DIOP-Pd complex, which led to the condensation product in 46% ee (Scheme 85) (200). This reaction used a racemic starting material, but the enantioselection was not a result of kinetic resolution of the starting material, because the chemical yield was above 80%. However, in certain cases, the selectivity is controlled at the stage of the initial oxidative addition to a Pd(0) species. In a related reaction, a BINAP-Pd(0) complex exhibits excellent enantioselectivity the chiral efficiency is affected by the nature of the leaving group of the allylic derivatives (Scheme 85) (201). It has been suggested that this asymmetric induction is the result of the chiral Pd catalyst choosing between two reactive conformations of the allylic substrate. [Pg.106]

Use of chiral cyclopropylethynyllithium derivatives permits the elegant selective synthesis of labeled chiral vinylcyclopropanes, for stereochemical studies of the thermal vinyl cyclopropane-cyclopentene rearrangement237. Thus, reductive elimination of (1 S,trans)-(2,2-dibromoethenyl)-l-methylcyclopropane with BuLi in pentane, followed by hydrolysis of the lithium acetylide, afforded (15,/ram)-2-ethynylmethylcyclopropane (equation 157). [Pg.559]


See other pages where Cyclopentene chiral is mentioned: [Pg.300]    [Pg.336]    [Pg.145]    [Pg.22]    [Pg.80]    [Pg.277]    [Pg.205]    [Pg.145]    [Pg.394]    [Pg.129]    [Pg.447]    [Pg.313]    [Pg.443]    [Pg.122]    [Pg.550]    [Pg.535]    [Pg.64]    [Pg.324]    [Pg.174]    [Pg.381]    [Pg.440]    [Pg.22]    [Pg.159]    [Pg.305]    [Pg.828]    [Pg.346]    [Pg.157]    [Pg.674]    [Pg.433]    [Pg.302]    [Pg.210]   
See also in sourсe #XX -- [ Pg.189 , Pg.198 ]




SEARCH



Cyclopenten

Cyclopentene

Cyclopentenes

Cyclopentenes chiral

Cyclopentenes chiral

Michael chiral cyclopentenes

© 2024 chempedia.info