Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Cyclohexane rearrangements

The comparable strain between a cyclobutyl and cyclopropyl ring suggests the feasibility of a vinylcyclobutane to cyclohexane rearrangement. Nevertheless, such a process appears to proceed much less facilely and is complicated by [2 + 2] cycloreversion. Thermal rearrangements of vinylcyclobutanones have been reported (Eq. 92)118). However, the synthetically most useful reactions appear to be the base... [Pg.57]

Alkylcyclopentanes and cyclohexanes rearrange to aliphatic alkenes during both photolysis and radiolysis [108-113]. The double bond in the product aliphatic alkenes can be found connected to one of the carbon atoms taking part in ring opening. The derivation of... [Pg.379]

One outstanding reaction related to Friedel-Crafts alkylation is the sliding cyclohexane rearrangement mediated by ZrCU as shown in Eq. (13) [14]. When tetralin 29 was stirred with ZrCU at ambient temperature for 2 days isomerized product 32 was obtained in high yield. The mechanism in which intermediates 30 and 31 are proposed involves the ambivalent, hard and soft Lewis acidic character of zirconium. [Pg.870]

Beckmann rearrangement of cvc7ohexanone oxime. M.p. 68-70 C, b.p. I39 C/12 mm. On healing it gives polyamides. Used in the manufacture of Nylon[6]. Cyclohexanone oxime is formed from cyclohexane and niirosyl chloride. U.S. production 1978 410 000 tonnes, capryl alcohol See 2-octanol. caiH Uc acid See oclanoic acid. [Pg.78]

This reaction applies to many i,2 diketones, and is termed the Benzilic Acid Rearrangement. It provides a ready method for the preparation of disubstituted a4iydroxy-carboxylic acids. When applied to a cyclic 1,2-diketone, the ring system is necessarily reduced by one carbon atom for example, cyclohexan-i,2 ... [Pg.235]

Within the cubane synthesis the initially produced cyclobutadiene moiety (see p. 329) is only stable as an iron(O) complex (M. Avram, 1964 G.F. Emerson, 1965 M.P. Cava, 1967). When this complex is destroyed by oxidation with cerium(lV) in the presence of a dienophilic quinone derivative, the cycloaddition takes place immediately. Irradiation leads to a further cyclobutane ring closure. The cubane synthesis also exemplifies another general approach to cyclobutane derivatives. This starts with cyclopentanone or cyclohexane-dione derivatives which are brominated and treated with strong base. A Favorskii rearrangement then leads to ring contraction (J.C. Barborak, 1966). [Pg.78]

Caprolactam [105-60-2] (2-oxohexamethyleiiiiriiQe, liexaliydro-2J -a2epin-2-one) is one of the most widely used chemical intermediates. However, almost all of the aimual production of 3.0 x 10 t is consumed as the monomer for nylon-6 fibers and plastics (see Fibers survey Polyamides, plastics). Cyclohexanone, which is the most common organic precursor of caprolactam, is made from benzene by either phenol hydrogenation or cyclohexane oxidation (see Cyclohexanoland cyclohexanone). Reaction with ammonia-derived hydroxjlamine forms cyclohexanone oxime, which undergoes molecular rearrangement to the seven-membered ring S-caprolactam. [Pg.426]

Toray. The photonitrosation of cyclohexane or PNC process results in the direct conversion of cyclohexane to cyclohexanone oxime hydrochloride by reaction with nitrosyl chloride in the presence of uv light (15) (see Photochemical technology). Beckmann rearrangement of the cyclohexanone oxime hydrochloride in oleum results in the evolution of HCl, which is recycled to form NOCl by reaction with nitrosylsulfuric acid. The latter is produced by conventional absorption of NO from ammonia oxidation in oleum. Neutralization of the rearrangement mass with ammonia yields 1.7 kg ammonium sulfate per kilogram of caprolactam. Purification is by vacuum distillation. The novel chemistry is as follows ... [Pg.430]

Benzylenol ethers rearrange in an apparently similar fashion via photolytic fission of the benzyl-oxygen bond and subsequent recombination steps. Irradiation in quartz of a cyclohexane solution of 3-benzyloxycholesta-3,5-diene (250) leads to 23% (251), 13% (252) [presumably formed from (251) during workup] and 10% (253). ... [Pg.342]

The rearrangement of certain saturated hydrocarbons under the influence of Lewis acids has been known for some time. Cyclohexane, for example, is converted to a mixture of hydrocarbons including methylcyclopentane. It was while investigating this... [Pg.126]

Reaction is brought about thermally usually at around 200 °C either in an inert solvent (diphenyl ether, cyclohexane and diethylaniline have been used) or in the absence of a solvent. If the ortho positions in the aromatic ether are blocked (as in LXXVII) then rearrangement to the para position LXXVIII occurs, viz. [Pg.467]

Cyclohexane (C) and methylcyclopentane (M) are isomers with the chemical formula C6H12. The equilibrium constant for the rearrangement C M in solution is 0.140 at 25°C. (a) A solution of 0.0200 mol-L 1 cyclohexane and 0.100 mol-I. 1 methylcyclopentane is prepared. Is the system at equilibrium If not, will it will form more reactants or more products (b) What are the concentrations of cyclohexane and methylcyclohexane at equilibrium (c) If the temperature is raised to 50.°C, the concentration of cyclohexane becomes 0.100 mol-L 1 when equilibrium is reestablished. Calculate the new equilibrium constant, (d) Is the reaction exothermic or endothermic at 25°C Explain your conclusion. [Pg.514]

For example, the parent bicyclo[2.2.1] system 9 affords the epoxy-aldehyde 64 in high yield (97 %) in nonpolar solvents (cyclohexane)62). The mechanism is rationalized in equation 52. Small amounts (ca. 1 %) of the bicyclic ether 65 are also formed, but it is known that 64 rearranges into 65 on heating 62). [Pg.157]

The Prins cyclization can also be coupled with a ring-contraction pinacol rearrangement, as illustrated in Scheme 1.6. This allows a smooth conversion of alkyl-idene-cyclohexane acetal 1-16 to single bond-joined cyclohexane cyclopentane aldehyde 1-17 [le]. [Pg.14]

The reverse process has also been examined. 2-Phenyloxazole is converted in a similar fashion to 3-phenyl-2//-azirine-2-carbaldehyde on irradiation in benzene or cyclohexane.128 Further rearrangement to the corresponding isoxazole can be effected thermally but not photochemically. A competing pathway leading to the formation of 4-phenyloxazole has also been observed and is thought to involve a bicyclic intermediate arising by 2,5-bonding. [Pg.265]

To explore the mechanism of allylic hydroxylation, three probe substrates, 3,3,6,6-tetradeuterocyclohexene, methylene cyclohexane, and /l-pinenc, were studied (113). Each substrate yielded a mixture of two allylic alcohols formed as a consequence of either retention or rearrangement of the double bond. The observation of a significant deuterium isotope effect (4-5) in the oxidation of 3,3,6,6-tetradeuterocyclohexene together with the formation of a mixture of un-rearranged and rearranged allylic alcohols from all three substrates is most consistent with a hydrogen abstraction-oxygen rebound mechanism (Fig. 4.48). [Pg.74]

It can be obtained from cyclohexane. Cyclohexane is air oxidised to yield a mixture of cyclohexanol and cyclohexanone. Cyclohexanol is dehydrogenated to cyclohexanone over copper catalyst. Cyclohexanone when treated with hydroxylamine sulphate at 20°-95°C gives an oxime. The oxime when treated with concentrated sulphuric acid undergoes Beckmann rearrangement to yield caprolactam. [Pg.213]

There are few examples of other allowed sigmatropic shifts involving six ten electron transition states, but these are not common reactions. A [3, 4] shift is observed in competition with a [1, 2] shift in cations derived from cyclohexane diols. This is a cationic equivalent of the Cope rearrangement,... [Pg.92]


See other pages where Cyclohexane rearrangements is mentioned: [Pg.381]    [Pg.385]    [Pg.381]    [Pg.385]    [Pg.234]    [Pg.655]    [Pg.22]    [Pg.368]    [Pg.285]    [Pg.211]    [Pg.212]    [Pg.606]    [Pg.492]    [Pg.267]    [Pg.341]    [Pg.137]    [Pg.121]    [Pg.394]    [Pg.312]    [Pg.352]    [Pg.136]    [Pg.23]    [Pg.15]    [Pg.32]   
See also in sourсe #XX -- [ Pg.8 ]

See also in sourсe #XX -- [ Pg.8 ]

See also in sourсe #XX -- [ Pg.7 , Pg.8 ]

See also in sourсe #XX -- [ Pg.7 , Pg.8 ]

See also in sourсe #XX -- [ Pg.8 ]




SEARCH



© 2024 chempedia.info