Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Nucleophilic addition, 2,5-cyclohexadienone

Nucleophilic additions to (cyclohexadienone)Fe(CO)3 complexes (218) occur in a dia-stereospecific fashion (Scheme 56)197. For example, the Reformatsky reaction of ketone (218a) affords a simple diasteromeric alcohol product19715. The reduction of (1-carbo-methoxycyclohexa-l,3-dien-5-one)Fe(CO)3 (218b) to give 219 has been utilized in the enantioselective synthesis of methyl shikimate. In a similar fashion, cycloadditions of (2-methoxy-5-methylenecyclohexa-l,3-diene)Fe(CO)3 (220) occur in a diastereospecific fashion198. [Pg.958]

The monolithium salt of 4-hydroxy-4-(phenylethynyl)-2.5-cyclohexadienone (12), prepared in situ by the addition of lithium acetylide to /7-benzoquinone, was treated with methylmagnesium chloride in l HF-TMEDA or in THF —DMPU. The syn-, 4-addition adduct 13, derived from intramolecular delivery of the carbon nucleophile by the hydroxy oxygen, as well as the <7s-1,4-diol 14, obtained via intermolecular 1,2-addition, were obtained in varying amounts depending on the conditions. The selectivity on 1,4- to 1,2-addition increased by the addition of cation chelating agents such as DMPU, TMEDA, and 15-crown-5. Although the 1,4 to 1,2... [Pg.901]

Rawal s group developed an intramolecular aryl Heck cyclization method to synthesize benzofurans, indoles, and benzopyrans [83], The rate of cyclization was significantly accelerated in the presence of bases, presumably because the phenolate anion formed under the reaction conditions was much more reactive as a soft nucleophile than phenol. In the presence of a catalytic amount of Herrmann s dimeric palladacyclic catalyst (101) [84], and 3 equivalents of CS2CO3 in DMA, vinyl iodide 100 was transformed into ortho and para benzofuran 102 and 103. In the mechanism proposed by Rawal, oxidative addition of phenolate 104 to Pd(0) is followed by nucleophilic attack of the ambident phenolate anion on o-palladium intermediate 105 to afford aryl-vinyl palladium species 106 after rearomatization of the presumed cyclohexadienone intermediate. Reductive elimination of palladium followed by isomerization of the exocyclic double bond furnishes 102. [Pg.285]

Intramolecular oxidative cyclizations in the appropriately substituted phenols and phenol ethers provide a powerful tool for the construction of various practically important polycyclic systems. Especially interesting and synthetically useful is the oxidation of the p-substituted phenols 12 with [bis(acyloxy)iodo]-arenes in the presence of an appropriate external or internal nucleophile (Nu) leading to the respective spiro dienones 15 according to Scheme 6. It is assumed that this reaction proceeds via concerted addition-elimination in the intermediate product 13, or via phenoxenium ions 14 [18 - 21]. The recently reported lack of chirality induction in the phenolic oxidation in the presence of dibenzoyltar-taric acid supports the hypothesis that of mechanism proceeding via phenoxenium ions 14 [18]. The o-substituted phenols can be oxidized similarly with the formation of the respective 2,4-cyclohexadienone derivatives. [Pg.103]

Photochemical ring opening of linearly conjugated cyclohexadienones affords dienylketenes (145), which react in one of the following ways recycli-zation to the original or to a stereoisomeric cyclohexadienone, formation of bicyclo[3.l.0]hexenones (146), or addition of a protic nucleophile to yield substituted hexadienecarboxylic acids (147) (Quinkert et al., 1979). [Pg.463]

Recently, an oxidative dearomatization of substituted phenols followed by a desymmetrizing asymmetric intramolecular Michael addition catalyzed by the pro-linol derivative 27 has been described towards the synthesis of highly functionalized polycyclic molecules with excellent enantioselectivities [40]. As shown in Scheme 2.15, the reaction starts with an oxidation of the phenol moiety to the corresponding mera-cyclohexadienones employing PhlCOAc), mild oxidant that does not react with the aldehyde nor with the catalyst. In the presence of different nucleophiles such as, methanol, cyanide, or fluoride, intermediates 26 are formed, which suffer intramolecular Michael addition of the aldehyde moiety to afford the desired chiral products 28 with excellent diastereo- and enantioselectivities. [Pg.55]

The radicals formed by the addition step are rapidly oxidized to cations, which give rise to the final product by intramolecular capture of a nucleophilic carboxylate group. With diones such as 1,3-cyclohexadienone, one of the carbonyl oxygens serves as the internal nucleophile ... [Pg.551]


See other pages where Nucleophilic addition, 2,5-cyclohexadienone is mentioned: [Pg.2049]    [Pg.255]    [Pg.408]    [Pg.26]    [Pg.18]    [Pg.142]    [Pg.23]    [Pg.168]    [Pg.65]    [Pg.347]    [Pg.593]    [Pg.1023]    [Pg.817]    [Pg.1227]    [Pg.1233]    [Pg.327]    [Pg.269]    [Pg.384]    [Pg.159]    [Pg.639]   
See also in sourсe #XX -- [ Pg.23 ]




SEARCH



2,4-cyclohexadienone

© 2024 chempedia.info