Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Cyclodextrin concentration micellar electrokinetic

The FITC labeling method was also applied to chiral separations of amino acids on a microchip to determine the enantiomeric ratios of amino acids found on a meteorite [27], Since biotic amino acids are normally single enantiomers, chiral separations of amino acids are not truly clinical in nature, but illustrate the potential for chiral separations of small molecules of clinical interest. Ma-thies and co-workers used this technique to search for evidence of life in extraterrestrial environments. Enantiomeric forms of Val, Ala, Glu, and Asp could be discriminated by addition of a-, (3-, or y-cyclodextrin (CD) to the run buffer. Improved resolution with faster separations was found with respect to conventional CE. This method has been modified, by addition of SDS to the buffer, to perform cyclodextrin-modified micellar electrokinetic chromatography (CD-MEKC) [28]. Increasing the SDS concentration decreased the magnitude of elec-troosmotic flow (EOF), increasing the effective migration distance, and therefore the resolution on the microchips. [Pg.437]

Micelles and cyclodextrins are the most common reagents used for this technique. Micellar electrokinetic capillary chromatography (MECC or MEKC) is generally used for the separation of small molecules [6], Sodium dodecyl sulfate at concentrations from 20 to 150 mM in conjunction with 20 mM borate buffer (pH 9.3) or phosphate buffer (pH 7.0) represent the most common operating conditions. The mechanism of separation is related to reversed-phase liquid chromatography, at least for neutral solutes. Organic solvents such as 5-20% methanol or acetonitrile are useful to modify selectivity when there is too much retention in the system. Alternative surfactants such as bile salts (sodium cholate), cationic surfactants (cetyltrimethy-lammonium bromide), nonionic surfactants (poly-oxyethylene-23-lauryl ether), and alkyl glucosides can be used as well. [Pg.248]

Tesaf ova et al. [87] used a modified version of SIMUL, which they called SIMULMIC to simulate the separation of neutral analytes in a system with a neutral cyclodextrin and anionic micelles. A number of systems were examined in which various combinations of the inlet and outlet vials and the capillary itself were filled with cyclodextrin. Simulation results were used to examine the micellar/cyclodextrin boundary at various times and concentrations although no simulation results for a chiral separation were reported. To the best of our knowledge, this is the only dynamic simulation of an electrokinetic chromatography (EKC) separation to date. [Pg.533]


See other pages where Cyclodextrin concentration micellar electrokinetic is mentioned: [Pg.314]    [Pg.367]    [Pg.14]    [Pg.191]    [Pg.278]    [Pg.315]    [Pg.329]    [Pg.777]   


SEARCH



Electrokinetic

Electrokinetics)

Micellar concentration

Micellar electrokinetic

© 2024 chempedia.info