Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Cycloalkyl carbenium ions

A mixture of water/pyridine appears to be the solvent of choice to aid carbenium ion formation [246]. In the Hofer-Moest reaction the formation of alcohols is optimized by adding alkali bicarbonates, sulfates [39] or perchlorates. In methanol solution the presence of a small amount of sodium perchlorate shifts the decarboxylation totally to the carbenium ion pathway [31]. The structure of the carboxylate can also support non-Kolbe electrolysis. By comparing the products of the electrolysis of different carboxylates with the ionization potentials of the corresponding radicals one can draw the conclusion that alkyl radicals with gas phase ionization potentials smaller than 8 e V should be oxidized to carbenium ions [8 c] in the course of Kolbe electrolysis. This gives some indication in which cases preferential carbenium ion formation or radical dimerization is to be expected. Thus a-alkyl, cycloalkyl [, ... [Pg.116]

Of course, the traditional problem of the lack of precise knowledge of the heats of solvation for the passage of these ions into solution, makes the above criteria of stability less valuable to the condensed-phase chemist. A major breakthrough in this classical impasse has been achieved by Arnett and coworkers " who have recently carried out calorimetric measurements leading to reliable values of the enthalpy of ionisation of various alkyl, cycloalkyl and aiyl halides in solution. These determinations owe their validity to the use of superacid conditions and the NMR verification that the ions expected were in fact formed in those media without Ihe occurrence of secondary reactions. One of the most important conclusion of these studies is that on the whole the relative stabUities of carbenium ions are the same in the gas pha% and in the solvents used, i.e., electrostatic solvation effects do not alter the order of stability. The importance of this new experimental approach is quite obvious and one can except in the near firture considerable advances in the field of the thermodynamics of reactive carbenium ions in solution through the attmnment of a precise knowledge of AG° values for their formation in various media. [Pg.28]

Cycloalkyl esters for the side-chain protection of aspartic acid in SPPS have been developed to increase resistance to aspartimide formation. Based on mechanistic studies of this side reaction, these protection groups should fulfill the following criteria provide steric hindrance to intramolecular aminolytic attack of the ester by the amide nitrogen in acidic and basic media, provide increased stability toward repetitive TFA treatments but quantitative cleavage by HE, as well as stabilization of the carbenium ion produced by cleavage of the protecting group to prevent recapture by the peptide. The secondary cycloalkyl esters are more acid stable and more sterically hindered if compared to the primary benzyl esters. In Scheme 7, different cycloalkyl esters are shown. [Pg.248]

The electrolysis products of different carboxylates have been compared with the ionization potentials of the intermediate radicals. From this it appeared that alkyl radicals with gas-phase ionization potentials smaller than 8 eV mainly lead to carbenium ions. Accordingly, a-substituents such as carboxy, cyano or hydrogen support the radical pathway, whilst alkyl, cycloalkyl, chloro, bromo, amino, alkoxy, hydroxy, acyloxy or aryl more or less favor the route to carbenium ions. Besides electronic effects, the oxidation seems also to be influenced by steric factors. Bulky substituents diminish the extent of coupling. The main experimental factors that affect the yield in the Kolbe electrolysis are the current density, the pH of the electrolyte, ionic additives, the solvent and the anode material. [Pg.634]


See other pages where Cycloalkyl carbenium ions is mentioned: [Pg.4]    [Pg.7]    [Pg.203]    [Pg.204]    [Pg.3]    [Pg.179]    [Pg.181]    [Pg.3]    [Pg.369]    [Pg.285]    [Pg.286]    [Pg.251]    [Pg.251]    [Pg.4]    [Pg.7]    [Pg.203]    [Pg.204]    [Pg.3]    [Pg.179]    [Pg.181]    [Pg.3]    [Pg.369]    [Pg.285]    [Pg.286]    [Pg.251]    [Pg.251]   
See also in sourсe #XX -- [ Pg.181 ]




SEARCH



9- Cycloalkyl

Carbenium

Carbenium ions

Cycloalkylation

Cycloalkylations

© 2024 chempedia.info