Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Cycloalkene oxides reduction

A practical synthesis of 1,3-OX AZEPINES VIA PHOTOISOMERIZATION OF HETERO AROMATIC V-OXIDES is illustrated for 3,1-BENZOXAZEPINE. A hydroboration procedure for the synthesis of PERHYDRO-9b-BORAPHENALENE AND PERHYDRO-9b-PHEN-ALENOL illustrates beautifully the power of this methodology in the construction of polycyclic substances. The conversion of LIMONENE TO p-MENTH-8-EN-YL METHYL ETHER demonstrates a regio-and chemoselective method for the PHOTOPROTONATION OF CYCLOALKENES. An efficient method for the conversion of a ketone to an olefin involves REDUCTIVE CLEAVAGE OF VINYL PHOSPHATES. A mild method for the conversion of a ketone into the corresponding trimethylsiloxy enol ether using trimethylsilyl acetate is shownforthe synthesis of (Z)-3-TRIMETHYLSILOXY-2-PENTENE. [Pg.178]

The reductive coupling of carbonyl compounds with formation of C-C double bonds was developed in the early seventies and is now known as McMurry reaction [38, 39]. The active metal in these reactions is titanium in a low-valent oxidation state. The reactive Ti species is usually generated from Ti(IV) or Ti(III) substrates by reduction with Zn, a Zn-Cu couple, or lithium aluminum hydride. A broad variety of dicarbonyl compounds can be cyclized by means of this reaction, unfunctionalized cycloalkenes can be synthesized from diketones, enolethers from ketone-ester substrates, enamines from ketone-amide substrates [40-42], Cycloalkanones can be synthesized from external keto esters (X = OR ) by subsequent hydrolysis of the primary formed enol ethers (Scheme 9). [Pg.1128]

A much more frequently used reaction is the cleavage of unsaturated compounds to aldehydes (equations 98 and 99). Alkenes and cycloalkenes that possess one or two hydrogens at the double bonds are oxidized by ozone to ozonides, which have to be reduced to prevent a subsequent oxidation to acids by the excess oxygen atom. Reductions are carried out, usually without isolation of the ozonides, by catalytic hydrogenation over palladium catalyst [80, 81,1106] or Raney nickel [55] or by treatment with... [Pg.77]

Zeolite titanium beta has been tested in the liquid- and gas-phase Meerwein-Ponndorf-Verley reduction of cyclohexanones and the Oppenauer oxidation of cyclohexanols. A high selectivity towards the thermodynamically unfavourable cis-alcohol was observed, which has been ascribed to transition-state selectivity in the pores of the zeolite. Under gas-phase conditions the dehydration of alcohols to cycloalkenes is observed as a side reaction. The catalyst was found to be active even in the presence of water and ammonia. [Pg.1015]

We report here the hydrogenation of cycloalkenes using Rh-supported montmorillonite as a catalyst. The catalyst preparation was based on oxidative degradation of intercalated tris-(phenanthroline)-Rh(III) followed by reduction under hydrogen atmosphere. There is no obvious trend observed in the hydrogenation yields of the olefins. The most notable difference in the hydrogenation behaviour is seen in case of cyclopentene/cyclooctene both olefins could be efficiently hydrogenated in their pure form but there was no conversion of cyclooctene in presence of cyclopentene. [Pg.767]

The reduction of epoxides withborane is noteworthy as it gives rise to the less substituted alcohol as the major product (7.96), in contrast to reduction with complex hydrides (compare with Scheme 7.71). The reaction is catalysed by small amounts of sodium or lithium borohydride and high yields of the alcohol are obtained. With 1-alkylcycloalkene epoxides, the 2-alkylcycloalkanols produced are entirely cis, and this reaction thus complements the hydroboration-oxidation of cycloalkenes described in Section 5.1, which leads to trans products. Reaction with borane in the presence of boron trifluoride has also been used for the reduction of epoxides and for the conversion of lactones and some esters into ethers. [Pg.452]


See other pages where Cycloalkene oxides reduction is mentioned: [Pg.872]    [Pg.875]    [Pg.425]    [Pg.876]    [Pg.215]    [Pg.174]    [Pg.445]    [Pg.985]    [Pg.306]    [Pg.425]    [Pg.876]    [Pg.620]    [Pg.220]    [Pg.9]    [Pg.985]    [Pg.195]   


SEARCH



Cycloalken

Cycloalkene oxides

Cycloalkenes

Cycloalkenes, oxidation

© 2024 chempedia.info