Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Cycloaddition reactions nucleophilic substitution

The nitrone group of the isatogen ring functions as a 1,3-dipolar system and takes part in a number of cycloaddition reactions with substituted olefins and acetylenes. The resulting adducts, in most cases, are not easily isolated and undergo further reactions, particularly nucleophilic addition and/or ring expansion, to give a variety of products. [Pg.150]

Figure 3 Direct pathways of ozone reaction with organics. (A) Criegge mechanism. (B) Electrophilic aromatic substitution and 1,3-dipolar cycloaddition. (C) Nucleophilic substitution. Figure 3 Direct pathways of ozone reaction with organics. (A) Criegge mechanism. (B) Electrophilic aromatic substitution and 1,3-dipolar cycloaddition. (C) Nucleophilic substitution.
N-alkylation, 4, 236 Pyrrole, 2-formyl-3,4-diiodo-synthesis, 4, 216 Pyrrole, 2-formyl-1-methyl-conformation, 4, 193 Pyrrole, 2-formyl-5-nitro-conformation, 4, 193 Pyrrole, furyl-rotamers, 4, 546 Pyrrole, 2-(2-furyl)-conformation, 4, 32 Pyrrole, 2-halo-reactions, 4, 78 Pyrrole, 3-halo-reactions, 4, 78 Pyrrole, 2-halomethyl-nucleophilic substitution, 4, 274 reactions, 4, 275 Pyrrole, hydroxy-synthesis, 4, 97 Pyrrole, 1-hydroxy-cycloaddition reactions, 4, 303 deoxygenation, 4, 304 synthesis, 4, 126, 363 tautomerism, 4, 35, 197 Pyrrole, 2-hydroxy-reactions, 4, 76 tautomerism, 4, 36, 198... [Pg.815]

Thieno[3,4-d][ 1,2,3]triazole, tetramethyl-synthesis, 6, 1015 Thieno[3,4-c][ 1,2,3]triazoles synthesis, 6, 1042 Thieno[3,4-d][ 1,2,3]triazoles reactions, 6, 1036 synthesis, 6, 1044 Thienyl radicals generation, 4, 832 Thiepane, 2-acetoxy-synthesis, 7, 574 Thiepane, 2-chloro-nucleophilic substitution, 7, 573 synthesis, 7, 574 Thiepane, 2-methyl-synthesis, 7, 573 Thiepane, 2-phenyl-synthesis, 7, 573 Thiepane, 3,3,6,6-tetramethyl-cycloaddition reactions, 7, 574 Thiepanes, 7, 547-592 applications, 7, 591... [Pg.882]

Construction of isolated or benzannulated five-membered rings of NHPs can be accomplished by means of various condensation or cycloaddition reactions all of which involve interaction of an electrophilic Pj and a nucleophilic C2N2 building block. Salts containing 1,3,2-diazaphospholide anions or 1,3,2-diazaphospholenium cations can be directly accessed by some of these reactions but the products are in most cases neutral 1,3,2-diazaphospholes or NHP. A particularly concerted effort has been directed toward the synthesis of P-halogen-substituted NHP which are capable of undergoing further reactions via halide displacement or halide abstraction and serve thus as entry points for the preparation of a wide variety of neutral and cationic NHP derivatives. 1,3,2-Diazaphospholide anions are normally accessed by deprotonation of suitable iV-H-substituted precursors. [Pg.67]

Jug and co-workers investigated the mechanism of cycloaddition reactions of indolizines to give substituted cycl[3,2,2]azines <1998JPO201>. Intermediates in this reaction are not isolated, giving evidence for a concerted [8+2] cycloaddition, which was consistent with results of previous theoretical calculations <1984CHEC(4)443>. Calculations were performed for a number of substituted ethenes <1998JPO201>. For methyl acrylate, acrylonitrile, and ethene, the concerted [8+2] mechanism seems favored. However, from both ab initio and semi-empirical calculations of transition states they concluded that reaction with nitroethene proceeded via a two-step intermolecular electrophilic addition/cyclization route, and dimethylaminoethene via an unprecedented two-step nucleophilic addition/cyclization mechanism (Equation 1). [Pg.713]

The direct, stereoselective conversion of alkynes to A-sulfonylazetidin-2-imines 16 by the initial reaction of copper(l) acetylides with sulfonyl azides, followed, in situ, by the formal [2+2] cycloaddition of a postulated A-sulfonylketenimine intermediate with a range of imines has been described <06AG(E)3157>. The synthesis of A-alkylated 2-substituted azetidin-3-ones 17 based on a tandem nucleophilic substitution followed by intramolecular Michael reaction of primary amines with alkyl 5-bromo-4-oxopent-2-enoates has been... [Pg.94]

Thiazyl halide monomers undergo a variety of reactions that can be classified under the general headings (a) reactions involving the 7i-system of the N = S triple bond, (b) nucleophilic substitution, (c) halide abstraction, and (d) halide addition. The cycloaddition of NSF with hexafluoro-1,3-butadiene provides an example of a type (a) reaction. [Pg.237]

Tandem nucleophilic substitution-[2+3] cycloaddition reaction of 4-bromo- and 4-toluenesulfonyloxy aldehydes 77 with sodium azide in DMF at 50 °C affords excellent yields (>80%) of substituted pyrrolo[.2.3.4]oxatriazoles 78 (Scheme 8) <2002HAC307>. [Pg.954]

Allene is a versatile functionality because it is useful as either a nucleophile or an electrophile and also as a substrate for cycloaddition reactions. This multi-reactivity makes an allene an excellent candidate for a synthetic manipulations. In addition to these abilities, the orthogonality of 1,3-substitution on the cumulated double bonds of allenes enables the molecule to exist in two enantiomeric configurations and reactions using either antipode can result in the transfer of chirality to the respective products. Therefore, the development of synthetic methodology for chiral allenes is one of the most valuable subjects for the synthetic organic chemist. This chapter serves as an introduction to recent progress in the enantioselective syntheses of allenes. Several of the earlier examples are presented in excellent previous reviews [ ] ... [Pg.141]

Isonitrile complexes, having a similar electronic structure to carbonyl complexes, can also react with nucleophiles. Amino-substituted carbene complexes can be prepared in this way (Figure 2.6) [109-112]. Complexes of acceptor-substituted isonitriles can undergo 1,3-dipolar cycloaddition reactions with aldehydes, electron-poor olefins [113], isocyanates [114,115], carbon disulfide [115], etc., to yield heterocycloalkylidene complexes (Figure 2.6). [Pg.21]

Keywords Absolute configuration, Amines, Amino acids, Carbenes, Cascade reactions, 2-chloro-2-cyclopropylideneacetates. Combinatorial libraries. Cycloadditions, Cyclobutenes, Cyclopropanes, Diels-Alder reactions. Heterocycles, Michael additions. Nitrones, Nucleophilic substitutions, Peptidomimetics, Palladium catalysis. Polycycles, Solid phase synthesis, Spiro compounds. Thiols... [Pg.149]

In the reactions with phosphonio-a-methoxycarbonyl-alkanides, the products of type 261 derived from 1,3-cycloaddition can rearrange to the tautomeric lif-pyrazolo-triazole (87MI2). The reaction of 3-diazopyra-zoles and 3-diazoindazole with acyl-substituted phosphonium ylides led to pyrazolo-triazine and indazolo-triazine derivatives 266 instead of the expected triazole compounds (8IJHC675). In this case, the ylides, which can exist as phosphonium enolates, possess nucleophilic and electrophilic centers in a /8-relationship, giving [7 + 2] or [11 -I- 2]cycloaddition reactions. With dimethylsulfonio-a-aroyl-methanides, very complex, temperature-dependent mixtures were obtained, in some cases with sulfur retention (87MI3). [Pg.150]

Substituted derivatives of 3,4-didehydropyridine have also been prepared, and these have been utilized in a variety of cycloaddition and nucleophilic addition reactions (82T427 89ACR275). A recent example involves the synthesis of azaanthraquinones by reaction of the pyridyne with the lithium salt of 3-cyanophthalide (Scheme 156), in a sequence that also involves the intermediacy of a 3-pyridyl carbanion (88H2643). [Pg.275]


See other pages where Cycloaddition reactions nucleophilic substitution is mentioned: [Pg.201]    [Pg.7]    [Pg.451]    [Pg.172]    [Pg.328]    [Pg.248]    [Pg.550]    [Pg.669]    [Pg.766]    [Pg.786]    [Pg.793]    [Pg.968]    [Pg.270]    [Pg.309]    [Pg.32]    [Pg.163]    [Pg.63]    [Pg.174]    [Pg.153]    [Pg.103]    [Pg.53]    [Pg.231]    [Pg.6]    [Pg.529]    [Pg.75]    [Pg.399]    [Pg.359]    [Pg.425]    [Pg.130]    [Pg.970]    [Pg.129]   


SEARCH



2-Substituted cycloaddition

Cycloaddition 3- substitution

Cycloaddition nucleophilic

Nucleophiles substitution reactions

Nucleophilic substitution 3 + 2] cycloaddition

Nucleophilic substitution 3 + 4]/ cycloadditions

Nucleophilic substitution reactions nucleophiles

Substitution reactions nucleophile

Substitution reactions nucleophilic

© 2024 chempedia.info