Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Photochemical intramolecular cyclization

Efforts have been made to find stereoselective routes which provide disubstituted azetidines. Palladium catalysed cyclization of an enantiomer of allene-substituted amines and amino acids gives the azetidine ester 2 and a tetrahydropyridine in variable yield and ratio, depending on the substituents and conditions <990L717>. The (TRIS)- and (253I )-isomeis of the substituted azetidine-2-carboxylic acids 3 (R = COjH) are obtained in several steps from the corresponding 3 (R = CHjOSiMejBu ) which, in turn, is produced in high yield by photochemical intramolecular cyclization <98HCA1803>. [Pg.77]

Laarhoven, W. H., Photochemical Cyclizations and Intramolecular Cycloadditions of Conjugated Arylolefins.l. Photocyclization with Dehydrogenation, Reel. Trav. Chim. Pays Bas 1983, 102, 185 204. [Pg.500]

Indoles and Carbazoles. - Formation. 2-Arylindoles (132) are formed by intramolecular Wittig reaction of the phosphonium salts (131). The hydroxamic acids PhN(OH)COCH2COR (R = alkyl or aryl) cyclize in boiling toluene to mixtures of indoles (133) and 3-isoxazolones (134). Irradiation of a solution of o-iodoaniline and the potassium enolate of acetone affords 2-methylindole. The enamino-ketone (135) cyclizes photochemically to 1,2-dimethylindole (136) with elimination of acetaldehyde/ The styrene derivative (137), obtained by the action of Meerwein s acetal, Me2NCH(OMe)2, on o-nitrotoluene, yields 1-hydroxyindole on treatment with zinc/ Azidobenzocyclobutanes (138 R = Me, Ph, or CH2Ph) are converted into indoles (133) by the action of concentrated sulphuric acid/ ... [Pg.221]

Intramolecular cyclization of (76) in the presence of NaH gave exo (77) and endo (78) products (Equation (9)) <90SL584). Allene-based electrophile-mediated cyclization afforded iV-tosyl iodohexa-hydroazocines <94JCS(Pl)3549>. Photochemical intramolecular cycloaddition of phthalimide in acetone afforded the ring-opened product <82TL498l>. An unstable enaminone azocine derivative (81) was formed after the desulfurization of the bicyclic aminal (80), which in turn was synthesized from... [Pg.418]

Methods for the synthesis of central hydroisoquinolines or pyrrolo-hydroisoquinoHnes of manzamine A can be classified into 11 types of reactions (1) intermolecular Diels-Alder reaction, (2) intramolecular Diels-Alder reaction, (3) photochemical reaction, (4) radical reaction, (5) ionic cyclization, (6) intramolecular Michael reaction, (7) intramolecular Maimich reaction, (8) intramolecular [3 + 2] cycloaddition, (9) intermolecular [3 + 2] cycloaddition, (10) Pauson-Khand reaction, and (11) eneyne metathesis. [Pg.225]

Ketonic Compounds. As stated in the introduction (Section I), dissipation of electronic encatgy may occur by photochemical and photophysical routes. The photochemical processes of the ketones can result in photoionization, free radical formation, cyclization or intramolecular rearrangement. [Pg.84]

Laarhoven, W.H., Photochemical cyclizations and intramolecular cycloadditions of conjugated arylolefins. 1. Photocyclization with dehydrogenation, Rec. Trav. Chim. Pays-Bas, 102,185, 1983. [Pg.676]

Sako, C., Shimada, K., Hirota, K., and Maki, Y., Photochemical intramolecular cyclization of purine and pyrimidine nucleosides induced by an electron acceptor. Chemical evidence for the generation and reactivity of adenosyl cation radicals,/. Chem. Soc., Perkin Trans. 1, 1801,1992. [Pg.2052]

Rctrosynthetic path a corresponds to Pd-catalysed exo-trig cyclization of o-halo-JV-allylanilines. Path b involves the endo-trig cyclization of o-halo-JV-vinyl anilines. Path c is a structurally similar cyclization which can be effected photochemically in the absence of an o-substituent. Retrosynthetic path d involves intramolecular Friedel-Crafts oxyalkylation followed by aromatiz-ation. [Pg.35]

Photochemical 2 + 2 cycloadditions can also take place intramolecularly if a molecule has two double bonds that are properly oriented. " The cyclization of the quinone dimer shown above is one example. Other examples are... [Pg.1082]

Woodward and Hoffmann have first disclosed that the thermal (4M+2)-cyclization (and also the photochemical (4M)-cyclization) takes place via Type I process, and the photochemical (4m+2)-cyclization (and also the thermal (4m)-cyclization) via Type II process 51>. They called the former (Type I) process "disrotatory", while the latter (Type II) process was referred to as "conrotatory". They attributed this difference in selectivity to the symmetry of HO and SO MO in the ground-state and excited-state polyene molecules, respectively (Fig. 7.33). The former is symmetric with respect to the middle of the chain, and the latter antisymmetric, so that the intramolecular overlapping of the end regions having the same sign might lead to the Type I and Type II interactions, respectively. [Pg.71]

PET reactions [2] can be considered as versatile methods for generating radical cations from electron-rich olefins and aromatic compounds [3], which then can undergo an intramolecular cationic cyclization. Niwa and coworkers [4] reported on a photochemical reaction of l,l-diphenyl-l, -alkadienes in the presence of phenanthrene (Phen) and 1,4-dicyanobenzene (DCNB) as sensitizer and electron acceptor to construct 5/6/6- and 6/6/6-fused ring systems with high stereoselectivity. [Pg.337]

The group of Nakatani introduced photochemically induced cyclization that takes advantage of a system in which a carbene generator and a carbene trap are combined in the same molecule [37]. Thus, irradiation of compound 5-105 induced a cyclization to give an intermediate carbene 5-106, which underwent an intramolecular trapping by a pericyclic 6jt electrocyclization to afford 5-107 in a very good yield of 95% (Scheme 5.21). [Pg.353]

New cyclizations via photochemically generated aminyl radicals have been reported, including further examples of the Hofmann-Loeffler-Freytag reaction.313 Intramolecular addition of an aminyl radical, generated by photochemically induced nitrogen chlorine bond homoysis, is also accompanied by cyclization as illustrated by the conversion of the unsaturated N-chloroamide 378 to the pyrrolidine 379.314 Piperidine formation can also... [Pg.302]

The presence of a 2-substitutent in 3-phenylazirines (17, R —H in Scheme 21) modifies the mode of reaction with molybdenum carbonyl.47 In contrast to pyrazine formation for (17, R =H see Section V,C,2), the alkenyl azirine (18, Scheme 22) is transformed in excellent yield into 2-phenyl-5-carboxy-methylpyrrole. This product probably arises by intramolecular cyclization within an intermediate dienylnitrene intermediate, and related reactions have been devised to synthesize isoxazoles (see Section IV,E,2) and pyrazoles (see Section IV,D,1).47 The molybdenum carbonyl-promoted formation of 2,5-disubstituted pyrroles47 has analogy in uncatalyzed thermal, but not photochemical decomposition of 3-phenyl-2//-azirine 2-acrylate.49... [Pg.332]

Two type la syntheses of (3-hydroxypyrroles have appeared. An aza-Nazarov cyclization of l-azapenta-l,4-dien-3-ones produced (3-hydroxypyrroles including 2,2 -bipyrroles <06EJO5339>. A second approach to a (3-hydroxypyrrole involved an intramolecular N-H insertion into a rhodium carbene derived from the decomposition of a diazoketone <06JOC5560>. On the other hand, the photochemical decomposition of the diazoketone led to pyrrolidin-2-ones. [Pg.136]

Another interesting example of a photochemi-cally induced domino process is the combination of the photocyclization of aryl vinyl sulfides with an intramolecular addition as described by Dittami et al. [901 as intermediate a thiocarbonyl ylide can be assumed. The domino-Norrish I-Knoevenagel-allyl-silane cyclization developed by us allows the efficient stereoselective formation of 1,2-trans-subsituted five- and six-membered carbocycles.1911 A photochemical cycloaddition of enamino-aldehydes and enamino-ketones with the intermediate formation of an iminium salt followed by addition to allylsilanes gives access to novel bicyclic heterocy-des. New examples of photochemically induced... [Pg.61]

One of the exciting areas that has gained importance over the recent decade is the photochemical cyclization of non-conjugated dienes in the presence of species that can act as templates. One such species that has been used is copper(I) salts. The earliest example of the use of copper salts in the intramolecular photocycloaddition of non-conjugated dienes is that described for cycloocta-1,5-diene. When this is irradiated in the presence... [Pg.270]

Low-temperature photochemical cyclization of alkynes bearing a bulky substituent, mediated by CpCo(CO)2, proceeds with CO insertion to give cyclopentadienone complexes. Higher reaction temperatures lead to cyclotrimerization. The intramolecular variant of this reaction gives the bicyclic cyclopentadienones 139 and 139 (equation 19)142. Cyclization of unsymmetrically substituted diynes with the chiral R CpCo(CO)2 (R = 8-phenylmenthyl) leads to the formation of a mixture of diastereomers modest diastere-oselectivity was found. [Pg.932]

In qualitative terms, the rearrangement reaction is considerably more efficient for the oxime acetate 107b than for the oxime ether 107a. As a result, the photochemical reactivity of the oxime acetates 109 and 110 was probed. Irradiation of 109 for 3 hr, under the same conditions used for 107, affords the cyclopropane 111 (25%) as a 1 2 mixture of Z.E isomers. Likewise, DCA-sensitized irradiation of 110 for 1 hr yields the cyclopropane derivative 112 (16%) and the dihydroisoxazole 113 (18%). It is unclear at this point how 113 arises in the SET-sensitized reaction of 110. However, this cyclization process is similar to that observed in our studies of the DCA-sensitized reaction of the 7,8-unsaturated oximes 114, which affords the 5,6-dihydro-4//-l,2-oxazines 115 [68]. A possible mechanism to justify the formation of 113 could involve intramolecular electrophilic addition to the alkene unit in 116 of the oxygen from the oxime localized radical-cation, followed by transfer of an acyl cation to any of the radical-anions present in the reaction medium. [Pg.29]

Intramolecular cyclization of diphenylamines to carbazoles is one of the most versatile and practical methods. This has been achieved photochemically, thermally in the presence of elemental iodine at 350°C, or with platinum at 450-540°C, via free radicals with benzoyl peroxide in chloroform, or by using activated metals such as Raney nickel or palladium on charcoal. Most of these methods suffer from low to moderate yields, and, in some cases, harsh reaction conditions (8,480). [Pg.205]

The Dauben-Walker approach has yielded the smallest and most strained fenestrane known to date Following the intramolecular Wadsworth-Enunons cyclization of 443 which also epimerizes the butenyl sidechain to the more stable exo configuration, intramolecular photocycloaddition was smoothly accomplished to provide 444. Wolff-ELishner reduction of this ketone afforded the Cj-symmetric hydrocarbon 445. Application of the photochemical Wolff rearrangement to a-diazo ketone 446 p,ve 447. [Pg.24]

Theoretically, the regioselectivity observed in photochemical [2 + 2] cycloaddition of 56 with 1,1-dimethoxyethene is in good agreement with experimental results and has been explained on the basis of pertubational molecular orbital theory." Hartke and co-workers" described an interesting contrast in the reactivity of tropolones in an intramolecular Diels-Alder reaction (Scheme 6.18). Thus, alkylation of 64a and 64b with 65 gave 66a and 66b, respectively, that were subjected to cyclization in refluxing toluene. Whereas 66a decomposed under the reaction conditions, 66b afforded 67b in high yield. [Pg.67]

Studies on the photochemical reactions of dihydropyridines have proven to be interesting. There are a number of 1,4-dihydropyridines that are known to disproportionate when irradiated (equation 19) (B-76PH240). Analogous intramolecular reductions have also been observed by other workers (55JA447). In contrast to these results, the 1,4-dihydropyridine (59) rearranged to its 1,2-dihydro isomer (60). Further irradiation resulted in dimerization. Interestingly, the photodimer (61) cyclized to the cage compound (62). [Pg.370]

A large number of diazetidinones have been synthesized by an intramolecular cyclization of haloacetylhydrazones with suitable bases (Scheme 4). A photochemical Wolff rearrangement of... [Pg.552]


See other pages where Photochemical intramolecular cyclization is mentioned: [Pg.95]    [Pg.38]    [Pg.67]    [Pg.120]    [Pg.255]    [Pg.564]    [Pg.120]    [Pg.57]    [Pg.282]    [Pg.1198]    [Pg.342]    [Pg.881]    [Pg.92]    [Pg.730]    [Pg.274]    [Pg.313]    [Pg.210]    [Pg.161]    [Pg.539]    [Pg.354]    [Pg.176]    [Pg.57]    [Pg.57]   
See also in sourсe #XX -- [ Pg.1082 ]




SEARCH



Cyclizations intramolecular

Cyclizations photochemical

Intramolecular cyclization

Intramolecular photochemical

Photochemical cyclization

© 2024 chempedia.info