Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Cuprate alkylated

Arylcopper intermediates can be generated from organolithium compounds, as in the preparation of cuprates.95 These compounds react with a second aryl halide to provide unsymmetrical biaryls in a reaction that is essentially a variant of the cuprate alkylation process discussed on p. 680. An alternative procedure involves generation of a mixed diarylcyanocuprate by sequential addition of two different aryllithium reagents to CuCN, which then undergo decomposition to biaryls on exposure to oxygen.96 The second addition must be carried out at very low temperature to prevent equilibration with the symmetrical diarylcyanocuprates. [Pg.705]

The Cu-catalyzed alkylation of organomagnesium reagents by alkyl bromides and iodides in the presence of NMP (/7-methylpyrrolidinone, a nontoxic, polar, aprotic solvent) represents an attractive alternative to the classical cuprate alkylation reaction. [Pg.289]

Arylcopper intermediates can be generated from organolithium compounds as in the preparation of cuprates." These compounds react with a second aryl halide to provide unsymmetrical biaryls. This reaction is essentially a variant of the cuprate alkylation process discussed earlier in the chapter (p. 404). [Pg.414]

Use retrosynthesis to determine a lithium dialkyl cuprate/alkyl halide pair that could be combined to make each of the following targets. There are multiple acceptable answers for each one. (In the homework exercises you are asked to find all possibilities for each.)... [Pg.251]

Most enones are reduced to anion radicals by organo cuprates. It is likely, that this reaction is connected with the alkylation. Both the formation of anion radicals and of conjugate adducts are not observed, when the redox potential of the enone becomes too negative (H.O. House, 1976). [Pg.20]

The most frequently used organocuprates are those m which the alkyl group is pri mary Steric hindrance makes secondary and tertiary dialkylcuprates less reactive and they tend to decompose before they react with the alkyl halide The reaction of cuprate reagents with alkyl halides follows the usual 8 2 order CH3 > primary > secondary > tertiary and I > Br > Cl > F p Toluenesulfonates are somewhat more reactive than halides Because the alkyl halide and dialkylcuprate reagent should both be primary m order to produce satisfactory yields of coupled products the reaction is limited to the formation of RCH2—CH2R and RCH2—CH3 bonds m alkanes... [Pg.603]

A key step in the reaction mechanism appears to be nucleophilic attack on the alkyl halide by the negatively charged copper atom but the details of the mechanism are not well understood Indeed there is probably more than one mechanism by which cuprates react with organic halogen compounds Vinyl halides and aryl halides are known to be very unreactive toward nucleophilic attack yet react with lithium dialkylcuprates... [Pg.604]

Many other organometaUic compounds also react with carbonyl groups. Lithium alkyls and aryls add to the ester carbonyl group to give either an alcohol or an olefin. Lithium dimethyl cuprate has been used to prepare ketones from esters (41). Tebbe s reagent, Cp2TiCH2AlCl(CH2)2, where Cp = clyclopentadienyl, and other metal carbene complexes can convert the C=0 of esters to C=CR2 (42,43). [Pg.389]

This reaction illustrates a stereoselective preparation of (Z)-vinylic cuprates, which are very useful synthetic intermediates. They react with a variety of electrophiles such as carbon dioxide, epoxides, aldehydes, allylic halides, alkyl halides, and acetylenic halides they undergo... [Pg.7]

The formation of g-alkyl-a,g-unsaturated esters by reaction of lithium dialkylcuprates or Grignard reagents in the presence of copper(I) iodide, with g-phenylthio-, > g-acetoxy-g-chloro-, and g-phosphoryloxy-a,g-unsaturated esters has been reported. The principal advantage of the enol phosphate method is the ease and efficiency with which these compounds may be prepared from g-keto esters. A wide variety of cyclic and acyclic g-alkyl-a,g-unsaturated esters has been synthesized from the corresponding g-keto esters. However, the method is limited to primary dialkylcuprates. Acyclic g-keto esters afford (Zl-enol phosphates which undergo stereoselective substitution with lithium dialkylcuprates with predominant retention of stereochemistry (usually > 85-98i )). It is essential that the cuprate coupling reaction of the acyclic enol phosphates be carried out at lower temperatures (-47 to -9a°C) to achieve high stereoselectivity. When combined with they-... [Pg.21]

A number of alternative multi-step procedures for the synthesis of a-tert-alkyl ketones are known, none of which possess wide generality. A previous synthesis of 2-tert-penty1cyclopentanone involved reaction of N-1-cyclopentenylpyrrol 1 dine with 3-chloro-3-methy1-l-butyne and reduction of the resulting acetylene (overall yield 46 ). However, all other enamines tested afford much lower yields. Cuprate addition to unsaturated ketones may be useful in certain cases. Other indirect methods have been briefly reviewed. ... [Pg.99]

Asymmetric induction by sulfoxide is a very attractive feature. Enantiomerically pure cyclic a-sulfonimidoyl carbanions have been prepared (98S919) through base-catalyzed cyclization of the corresponding tosyloxyalkylsulfoximine 87 to 88 followed by deprotonation with BuLi. The alkylation with Mel or BuBr affords the diastereomerically pure sulfoximine 89, showing that the attack of the electrophile at the anionic C-atom occurs, preferentially, from the side of the sulfoximine O-atom independently from the substituent at Ca-carbon. The reaction of cuprates 90 with cyclic a,p-unsaturated ketones 91 was studied but very low asymmetric induction was observed in 92. [Pg.81]

Studies of die structures of cuprate species were initiated to elucidate die niedi-anisnis by wbidi tliey interact witli substrates and to understand dieit special reactivities. tn die early days tliese investigaiions were restricted to solution studies by spectroscopic tediniques. It was not until 1982 dial tlie dtst example of a cuprate species - [iCu Pbi-jiLiiTHFj))] - was stiuctutally diatacterlzed by X-tay crystal stiucture deterniination [ 100] ivide infra). It sbotild be noted tliat most of diese studies, reviewed previously [29, 45, 101], were limited to "simple" alkyl and aryl derivatives. [Pg.26]


See other pages where Cuprate alkylated is mentioned: [Pg.867]    [Pg.1277]    [Pg.643]    [Pg.971]    [Pg.970]    [Pg.143]    [Pg.867]    [Pg.1277]    [Pg.643]    [Pg.971]    [Pg.970]    [Pg.143]    [Pg.36]    [Pg.604]    [Pg.160]    [Pg.163]    [Pg.604]    [Pg.63]    [Pg.80]    [Pg.85]    [Pg.101]    [Pg.107]    [Pg.108]    [Pg.109]    [Pg.109]    [Pg.110]    [Pg.112]    [Pg.113]    [Pg.113]    [Pg.114]    [Pg.115]    [Pg.121]    [Pg.124]    [Pg.124]   
See also in sourсe #XX -- [ Pg.10 ]




SEARCH



Alkyl cuprates

Alkyl cuprates

Copper lithium alkyl cuprates

Cuprates, cyano alkylation

Gilman cuprates, reactions with alkyl halides

Halides, alkyl, reaction with cuprates

Heteroatom alkyl cuprates

Lithium alkyl cuprates

© 2024 chempedia.info