Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Crystal symmetry operator

The H-M symbolism derived from crystal symmetry operations. For image and movie representations of each point group, see the website http //neon.mems.cmu. edu/degraef/pg/index.html... [Pg.52]

Similar to the ODF for texture, SODF can be subjected to a Fourier analysis by using generalized spherical harmonics. However, there are three important differences. The first is that in place of one distribution (ODF), six SODFs are analyzed simultaneously. The components of the strain, or the stress tensor can be used for analysis in the sample or in the crystal reference system. The second difference concerns the invariance to the crystal and the sample symmetry operations. The ODF is invariant to both crystal and sample symmetry operations. By contrast, the six SODFs in the sample reference system are invariant to the crystal symmetry operations but they transform similarly to Equation (65) if the sample reference system is replaced by an equivalent one. Inversely, the SODFs in the crystal reference system transform like Equation (65) if an equivalent one replaces this system and remain invariant to any rotation of the sample reference system. Consequently, for the spherical harmonics coefficients of the SODF one expects selection rules different from those of the ODF. As the third difference, the average over the crystallites in reflection (83) is structurally different from Equations (5)+ (11). In Equation (83) the products of the SODFs with the ODF are integrated, which, in comparison with Equation (5), entails a supplementary difficulty. [Pg.365]

Crystals of tetracene and pentacene are triclinic, with two molecules per unit cell. The dimensions of the unit cell in the directions of the a and b axes are similar to those of naphthalene and anthracene the dimension in the direction of the c-axis increases proportionally to the number of benzene rings in the molecule. In all four crystal structures the long axes of both molecules in the unit cell are approximately parallel to the c crystal axis. However, in the triclinic structures of tetracene and pentacene, the only crystal symmetry operation is inversion. The results of calculation for tetracene crystals are shown in Table 3.6. Analogous results for pentacene can be found in (60), (61). The experimental data of the splitting cm-1 for the io-o transition in the tetracene crystal are in the interval 600-700 cm-1. For the /q o transition in a crystal of pentacene the... [Pg.93]

A crystal is comprised of an infinite 3-D lattice of repeating units, of which the smallest building block is known as the asymmetric unit. When acted upon by crystal symmetry operations such as rotation axes or mirror planes (see Section 2.3.2), the asymmetric unit is duplicated to produce the contents of a unit cell (Figure 2.7). For any crystal lattice, it is possible to define an infinite number of possible unit cells (Figure 2.8). However, by convention, this unit is chosen to be a repeatable unit that... [Pg.29]

In fignre A1.3.9 the Brillouin zone for a FCC and a BCC crystal are illustrated. It is a connnon practice to label high-synnnetry point and directions by letters or symbols. For example, the k = 0 point is called the F point. For cubic crystals, there exist 48 symmetry operations and this synnnetry is maintained in the energy bands e.g., E k, k, k is mvariant under sign pennutations of (x,y, z). As such, one need only have knowledge of (k) in Tof the zone to detennine the energy band tlnoughout the zone. The part of the zone which caimot be reduced by synnnetry is called the irreducible Brillouin zone. [Pg.107]

Periodic boundary conditions can also be used to simulate solid state con dition s although TlyperChem has few specific tools to assist in setting up specific crystal symmetry space groups. The group operation s In vert, Reflect, and Rotate can, however, be used to set up a unit cell manually, provided it is rectangular. [Pg.201]

Figure 6-3. Top Structure of the T6 single crystal unit cell. The a, b, and c crystallographic axes are indicated. Molecule 1 is arbitrarily chosen, whilst the numbering of the other molecules follows the application of the factor group symmetry operations as discussed in the text. Bottom direction cosines between the molecular axes L, M, N and the orthogonal crystal coordinate system a, b, c. The a axis is orthogonal to the b monoclinic axis. Figure 6-3. Top Structure of the T6 single crystal unit cell. The a, b, and c crystallographic axes are indicated. Molecule 1 is arbitrarily chosen, whilst the numbering of the other molecules follows the application of the factor group symmetry operations as discussed in the text. Bottom direction cosines between the molecular axes L, M, N and the orthogonal crystal coordinate system a, b, c. The a axis is orthogonal to the b monoclinic axis.
Creation operator, 505 representation of, 507 Critical value, 338 Crystallographic point groups irreducible representations, 726 Crystallographic symmetry groups construction of mixed groups, 728 Crystal, eigenstates of, 725 Crystal symmetry, changes in, 758 Crystals... [Pg.772]

These are the four main operations required to define the symmetry of a crystal structure. The most important is that of translation since each of the other procedures, called symmetry operations, must be consistant with the translation operation in the crystal structure. Thus, the rotation operation must be through an angle of 2n / n, where n = 1, 2, 3, 4 or 6. [Pg.50]

In Point Groups, one point of the lattice remains invarient under symmetry operations, i.e.- there is no translation involved. Space Groups are so-named because in each group all three- dimensional space remains invarient under operations of the group. That is, they contain translation components as well as the three symmetiy operations. We will not dwell upon the 231 Space Groups since these relate to determining the exact structure of the solid. However, we will show how the 32 Point Groups relate to crystal structure of solids. [Pg.51]

Translationengleiche subgroups have an unaltered translation lattice, i.e. the translation vectors and therefore the size of the primitive unit cells of group and subgroup coincide. The symmetry reduction in this case is accomplished by the loss of other symmetry operations, for example by the reduction of the multiplicity of symmetry axes. This implies a transition to a different crystal class. The example on the right in Fig. 18.1 shows how a fourfold rotation axis is converted to a twofold rotation axis when four symmetry-equivalent atoms are replaced by two pairs of different atoms the translation vectors are not affected. [Pg.212]

The occurrence of twinned crystals is a widespread phenomenon. They may consist of individuals that can be depicted macroscopically as in the case of the dovetail twins of gypsum, where the two components are mirror-inverted (Fig. 18.8). There may also be numerous alternating components which sometimes cause a streaky appearance of the crystals (polysynthetic twin). One of the twin components is converted to the other by some symmetry operation (twinning operation), for example by a reflection in the case of the dovetail twins. Another example is the Dauphine twins of quartz which are intercon-verted by a twofold rotation axis (Fig. 18.8). Threefold or fourfold axes can also occur as symmetry elements between the components the domains then have three or four orientations. The twinning operation is not a symmetry operation of the space group of the structure, but it must be compatible with the given structural facts. [Pg.223]

Fast methods for evaluating these integrals for the case of gaussian basis functions are known [12], Also, Hall has described how to get the symmetry operators (B) 1SjB, r, for any crystal space group [13]. The parameters account for thermal smearing of the charge density. In this work I use the form recommended by Stewart [14],... [Pg.268]

The molecule LaBe occupies a cubic site in the crystal. Find the 48 symmetry operations and thus the point group of the molecule. [Pg.112]

The unit cell considered here is a primitive (P) unit cell that is, each unit cell has one lattice point. Nonprimitive cells contain two or more lattice points per unit cell. If the unit cell is centered in the (010) planes, this cell becomes a B unit cell for the (100) planes, an A cell for the (001) planes a C cell. Body-centered unit cells are designated I, and face-centered cells are called F. Regular packing of molecules into a crystal lattice often leads to symmetry relationships between the molecules. Common symmetry operations are two- or three-fold screw (rotation) axes, mirror planes, inversion centers (centers of symmetry), and rotation followed by inversion. There are 230 different ways to combine allowed symmetry operations in a crystal leading to 230 space groups.12 Not all of these are allowed for protein crystals because of amino acid asymmetry (only L-amino acids are found in proteins). Only those space groups without symmetry (triclinic) or with rotation or screw axes are allowed. However, mirror lines and inversion centers may occur in protein structures along an axis. [Pg.77]

Seven crystal systems as described in Table 3.2 occur in the 32 point groups that can be assigned to protein crystals. For crystals with symmetry higher than triclinic, particles within the cell are repeated as a consequence of symmetry operations. The number of asymmetric units within the unit cell is related but not necessarily equal to the number of molecules in a unit cell, depending on how the molecules are related by symmetry operations. From the symmetry in the X-ray diffraction pattern and the systematic absence of specific reflections in the pattern, it is possible to deduce the space group to which the crystal belongs. [Pg.77]

Crystal lattices can be depicted not only by the lattice translation defined in Eq. (7.2), but also by the performance of various point symmetry operations. A symmetry operation is defined as an operation that moves the system into a new configuration that is equivalent to and indistinguishable from the original one. A symmetry element is a point, line, or plane with respect to which a symmetry operation is performed. The complete ensemble of symmetry operations that define the spatial properties of a molecule or its crystal are referred to as its group. In addition to the fundamental symmetry operations associated with molecular species that define the point group of the molecule, there are additional symmetry operations necessary to define the space group of its crystal. These will only be briefly outlined here, but additional information on molecular symmetry [10] and solid-state symmetry [11] is available. [Pg.189]

Notice that the symmetry operations of each point group by continued repetition always bring us back to the point from which we started. Considering, however, a space crystalline pattern, additional symmetry operations can be observed. These involve translation and therefore do not occur in point groups (or crystal classes). These additional operations are glide planes which correspond to a simultaneous reflection and translation and screw axis involving simultaneous rotation and translation. With subsequent application of these operations we do not obtain the point from which we started but another, equivalent, point of the lattice. The symbols used for such operations are exemplified as follows ... [Pg.100]

A few considerations about possible schemes of relationships between inorganic crystal structures based on a systematic construction of complex structural types by means of a few operations (symmetry operations, topological transformations) applied to some building units (point systems, clusters, rods, sheets), have been previously reported in 3.9.1, following criteria suggested, for instance, by Hyde and Andersson (1989) and by Zvyagin (1993). [Pg.185]

Equation (7.7) can be used to determine the characters of the symmetry operations C , where n = In ja, and then, to construct the reducible representations in the group G of the ion in the crystal. Some of the most common character elements are listed below ... [Pg.250]

Although the number of atoms in a crystal is extremely high, we can imagine the crystal as generated by a spatial reproduction of the asymmetric unit by means of symmetry operations. The calculation can thus be restricted to a particular portion of space, defined as the Brillouin zone (Brillouin, 1953). [Pg.135]


See other pages where Crystal symmetry operator is mentioned: [Pg.269]    [Pg.258]    [Pg.443]    [Pg.121]    [Pg.238]    [Pg.639]    [Pg.269]    [Pg.258]    [Pg.443]    [Pg.121]    [Pg.238]    [Pg.639]    [Pg.518]    [Pg.405]    [Pg.744]    [Pg.759]    [Pg.763]    [Pg.763]    [Pg.53]    [Pg.225]    [Pg.21]    [Pg.212]    [Pg.212]    [Pg.236]    [Pg.267]    [Pg.107]    [Pg.11]    [Pg.237]    [Pg.190]    [Pg.168]    [Pg.87]   
See also in sourсe #XX -- [ Pg.78 ]




SEARCH



Crystal symmetry

Crystallizers operation

Matrix crystal symmetry operator representation

Operator symmetry

Symmetry operations

Symmetry operations symmetries

Symmetry operators/operations

© 2024 chempedia.info