Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Crystal growth chain folding

A well studied example is given by the poly(oxyethylene-Z locfc-styrene). In case of atactic sequences of polystyrene, only the poly(oxyethylene), POE, can crystallize. A typical morphology of the POE is shown in Fig. 5.55. Single crystals of the copolymer can be grown from a common solvent which keeps both components mobile up to the time of crystallization of the POE-component. Figure 7.53 illustrates a growth spiral out of poly(oxyethylene-fclocfe-styrene), grown at 293 K from a solution of ethylbenzene (AB diblock, 28 wt-% oxyethylene block with a molar mass of about 10,000 Da). The crystal is comparable to the lamellar crystals of Fig. 5.55, i.e., the poly(oxyethylene) crystals are chain-folded with about 2.5 nm amorphous polystyrene layers at the interfaces. [Pg.748]

Polymer crystals form by the chain folding back and forth on itself, with crystal growth occurring by the deposition of successive layers of these folded chains at the crystal edge. The resulting crystal, therefore, takes on a platelike structure, the thickness of which corresponds to the distance between folds. [Pg.205]

Supramolecular structures formed during the crystallization of the melt under a tensile stress have already been described by Keller and Machin25. These authors have proposed a model for the formation of structures of the shish-kebab type according to which crystallization occurs in two stages in the first stage, the application of tensile stress leads to the extension of the molecules and the formation of a nucleus from ECC and the second stage involves epitaxial growth of folded-chain lamellae. [Pg.215]

Secondly, I wish to counteract anticipated despondency which some of the complexities on the present theoretical scene may perhaps provoke. For this purpose, I wish to invoke the decisive simplicity and definiteness of some of the experimental effects observed within the confines of the above, near ideal systems. This, as I often pointed out elsewhere, is unmatched in the field of crystal growth of simple substances. Complicated as polymers may seem, and subtle as some of the currently relevant theoretical issues, this should not obscure the essential simplicity and reproducibility of the core material. To be specific, the appropriate chains seem to want to fold and know when and how, and it is hardly possible to deflect them from it. Clearly, such purposeful drive towards a predetermined end state should continue to give encouragement to theorists for finding out why Those who are resolved to persevere or those who are newly setting out should find the present review a most welcome source and companion. [Pg.220]

Thin polymer films may also be investigated by TEM and high resolution images are obtained for e.g. thin films of liquid crystalline polymers [64]. Usually thin microtome cuts from bulk samples are investigated, but also epitaxial growth of polyoxymethylene on NaCl [152], chain folding of polyethylene crystals [153], epitaxial crystallization of polypropylene on polystyrene [154] or monomolecular polystyrene particles [155] are observed. The resolution is, however, in most cases not comparable to STM. [Pg.387]

Keywords Chain folding Computer modeling Crystal growth Crystal-melt interfaces Molecular dynamics Polymer crystallization... [Pg.37]

Polymer crystallization is usually divided into two separate processes primary nucleation and crystal growth [1]. The primary nucleation typically occurs in three-dimensional (3D) homogeneous disordered phases such as the melt or solution. The elementary process involved is a molecular transformation from a random-coil to a compact chain-folded crystallite induced by the changes in ambient temperature, pH, etc. Many uncertainties (the presence of various contaminations) and experimental difficulties have long hindered quantitative investigation of the primary nucleation. However, there are many works in the literature on the early events of crystallization by var-... [Pg.37]

Finally, we were led to the last stage of research where we treated the crystallization from the melt in multiple chain systems [22-24]. In most cases, we considered relatively short chains made of 100 beads they were designed to be mobile and slightly stiff to accelerate crystallization. We could then observe the steady-state growth of chain-folded lamellae, and we discussed the growth rate vs. crystallization temperature. We also examined the molecular trajectories at the growth front. In addition, we also studied the spontaneous formation of fiber structures from an oriented amorphous state [25]. In this chapter of the book, we review our researches, which have been performed over the last seven years. We want to emphasize the potential power of the molecular simulation in the studies of polymer crystallization. [Pg.39]

Molecular processes at the growth surface of the crystal are one of our greatest concerns. By melting a chain-folded lamella at 600 K for 200 ps, we prepared a 2D random-coil of the molecule. The random-coil was then instanta-... [Pg.45]

Figure 30 illustrates nine examples of the structures obtained in these simulations. It is clear that the chains group into crystallized kebabs on the shish surface. There are very few areas where the chains are partially or completely stretched under the influence of the shish template. The dominant mode of crystal nucleation on the shish is the growth of folded chains grouped into lamellar nuclei. Also, some of the chains do not join the central structure but drift away from it leaving a large gap on the shish between them. These simulations show clearly that the presence of the ordered template (the shish) influences the nucleation of lamellae and the formation of kebabs. [Pg.266]

Yamamoto, T. Molecular Dynamics Modeling of the Crystal-Melt Interfaces and the Growth of Chain Folded Lamellae. Vol. 191, pp. 37-85. [Pg.247]


See other pages where Crystal growth chain folding is mentioned: [Pg.81]    [Pg.82]    [Pg.116]    [Pg.142]    [Pg.374]    [Pg.375]    [Pg.118]    [Pg.228]    [Pg.169]    [Pg.42]    [Pg.67]    [Pg.116]    [Pg.125]    [Pg.296]    [Pg.296]    [Pg.227]    [Pg.242]    [Pg.276]    [Pg.141]    [Pg.18]    [Pg.39]    [Pg.50]    [Pg.73]    [Pg.74]    [Pg.80]    [Pg.90]    [Pg.101]    [Pg.240]    [Pg.258]    [Pg.260]    [Pg.44]    [Pg.159]    [Pg.688]    [Pg.215]    [Pg.26]    [Pg.26]    [Pg.53]    [Pg.58]   
See also in sourсe #XX -- [ Pg.112 , Pg.113 , Pg.115 , Pg.116 , Pg.142 ]




SEARCH



Chain crystallization

Chain folding

Chain-Growth

Chain-folded crystallization

Crystal chain

Crystallization chain folding

Folded chain

Folded crystals

Folded growth

© 2024 chempedia.info