Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

CRITICAL CONCENTRATION TEMPERATURE

Hydrolysis of solutions of Ti(IV) salts leads to precipitation of a hydrated titanium dioxide. The composition and properties of this product depend critically on the precipitation conditions, including the reactant concentration, temperature, pH, and choice of the salt (46—49). At room temperature, a voluminous and gelatinous precipitate forms. This has been referred to as orthotitanic acid [20338-08-3] and has been represented by the nominal formula Ti02 2H20 (Ti(OH). The gelatinous precipitate either redissolves or peptizes to a colloidal suspension ia dilute hydrochloric or nitric acids. If the suspension is boiled, or if precipitation is from hot solutions, a less-hydrated oxide forms. This has been referred to as metatitanic acid [12026-28-7] nominal formula Ti02 H2O (TiO(OH)2). The latter precipitate is more difficult to dissolve ia acid and is only soluble ia concentrated sulfuric acid or hydrofluoric acid. [Pg.120]

The separation of Hquid crystals as the concentration of ceUulose increases above a critical value (30%) is mosdy because of the higher combinatorial entropy of mixing of the conformationaHy extended ceUulosic chains in the ordered phase. The critical concentration depends on solvent and temperature, and has been estimated from the polymer chain conformation using lattice and virial theories of nematic ordering (102—107). The side-chain substituents govern solubiHty, and if sufficiently bulky and flexible can yield a thermotropic mesophase in an accessible temperature range. AcetoxypropylceUulose [96420-45-8], prepared by acetylating HPC, was the first reported thermotropic ceUulosic (108), and numerous other heavily substituted esters and ethers of hydroxyalkyl ceUuloses also form equUibrium chiral nematic phases, even at ambient temperatures. [Pg.243]

Amorphous Fe-3Cr-13P-7C alloys containing 2 at% molybdenum, tungsten or other metallic elements are passivated by anodic polarisation in 1 N HCl at ambient temperature". Chromium addition is also effective in improving the corrosion resistance of amorphous cobalt-metalloid and nickel-metalloid alloys (Fig. 3.67). The combined addition of chromium and molybdenum is further effective. Some amorphous Fe-Cr-Mo-metalloid alloys passivate spontaneously even in 12 N HCl at 60° C. Critical concentrations of chromium and molybdenum necessary for spontaneous passivation of amorphous Fe-Cr-Mo-13P-7C and Fe-Cr-Mo-18C alloys in hydrochloric acids of various concentrations and different temperatures are shown in Fig. 3.68 ... [Pg.634]

Fig. 3.68 Critical concentrations of chromium and molybdenum necessary for spontaneous passivation of amorphous Fe-Cr-Mo-13P-7C and Fe-Cr-Mo-18C alloys in hydrochloric acid of various concentrations and temperatures ... Fig. 3.68 Critical concentrations of chromium and molybdenum necessary for spontaneous passivation of amorphous Fe-Cr-Mo-13P-7C and Fe-Cr-Mo-18C alloys in hydrochloric acid of various concentrations and temperatures ...
Temperature in general, the critical concentrations of anions, e.g. benzoate" " , chromate" and nitrite ", required for the protection of steel increase as the temperature increases. [Pg.816]

An interesting and practically valuable result was obtained in [21] for PE + N2 melts, and in [43] for PS + N2 melts. The authors classified upper critical volumetric flow rate and pressure with reference to channel dimensions x Pfrerim y Qf"im-Depending on volume gas content

channel entrance (pressure of 1 stm., experimental temperature), x and y fall, in accordance with Eq. (24), to tp 0.85. At cp 0.80, in a very narrow interval of gas concentrations, x and y fall by several orders. The area of bubble flow is removed entirely. It appears that at this concentration of free gas, a phase reversal takes place as the polymer melt ceases to be a continuous phase (fails to form a continuous cluster , in flow theory terminology). The theoretical value of the critical concentration at which the continuous cluster is formed equals 16 vol. % (cf., for instance, Table 9.1 in [79] and [80]). An important practical conclusion ensues it is impossible to obtain extrudate with over 80 % of cells without special techniques. In other words, technology should be based on a volume con-... [Pg.119]

Fig. 17 B/E-p dependence of the critical temperatures of liquid-liquid demixing (dashed line) and the equilibrium melting temperatures of polymer crystals (solid line) for 512-mers at the critical concentrations, predicted by the mean-field lattice theory of polymer solutions. The triangles denote Tcol and the circles denote T cry both are obtained from the onset of phase transitions in the simulations of the dynamic cooling processes of a single 512-mer. The segments are drawn as a guide for the eye (Hu and Frenkel, unpublished results)... Fig. 17 B/E-p dependence of the critical temperatures of liquid-liquid demixing (dashed line) and the equilibrium melting temperatures of polymer crystals (solid line) for 512-mers at the critical concentrations, predicted by the mean-field lattice theory of polymer solutions. The triangles denote Tcol and the circles denote T cry both are obtained from the onset of phase transitions in the simulations of the dynamic cooling processes of a single 512-mer. The segments are drawn as a guide for the eye (Hu and Frenkel, unpublished results)...
A3 AIBN c Cp DLS DLVO DSC EO GMA HS-DSC KPS LCST Osmotic third virial coefficient 2,2 -Azobis(isobutyronitrile) Polymer concentration Partial heat capacity Dynamic light scattering Derjaguin-Landau-Verwey-Overbeek Differential scanning calorimetry Ethylene oxide Glycidylmethacrylate High-sensitivity differential scanning calorimetry Potassium persulphate Lower critical solution temperature... [Pg.16]

As another criterion of stability, a critical flocculation temperature(OFT) was measured. The measurement of CFT was carried out as follows the bare latex suspension was mixed with the polymer solution of various concentrations at 1+8 °C by the same procedure as in the adsorption experiments. Then, the mixture in a Pyrex tube(8 ml, U.0 wt %) was warmed slowly in a water bath and the critical temperature at which the dispersion becomes suddenly cloudy was measured with the naked eye. [Pg.134]

Figure 8. Relationship between critical flocculation temperature(CFT) and concentration of HPC for polystyrene latex. Figure 8. Relationship between critical flocculation temperature(CFT) and concentration of HPC for polystyrene latex.
Figure 5 shows the variation of Xg with temperature at two C values (0.20 and 0.25 mol dm 3). In both cases Xg is essentially zero until a critical temperature is reached, above which xg increases rapidly with increasing temperature reaching a maximum above which there is a tendency forXg to fall again with further increase in temperature. The critical temperature corresponding to the abrupt increase inTg is 20 and 25°C for C equal to 0.25 and 0.20 mol dm, respectively This temperature may be identified with the critical flocculation temperature (CFT) of the concentrated dispersion. [Pg.417]

Influence of Addition of Electrolyte and Increase of Temperature Addition of electrolyte or increase of temperature at a given electrolyte concentration to a sterically stabilized dispersion may result in its flocculation at a critical concentration or temperature, which in many cases coincides with the theta point for the stabilizing chain. At the theta point the mixing term in the steric interaction is zero and any yield value measured should correspond to the residual van der Waals attraction. The energy arising from van der Waals attraction may be calculated from the following approximate relationship,... [Pg.421]

A critical micelle temperature or CMT is a very useful value for PEO-PPO-PEO copolymers. This arises from the fact that micellization in these copolymers is due to the dehydration of the PPO block with increasing temperature. The value of the CMT ranges from 20 to 50 °C in commercially available PEO-PPO-PEO copolymers. The CMT increases whenever the copolymer concentration is increased [19]. [Pg.83]

The preparation of monoliths with polyNIPAAm chains grafted to the internal pore surface was discussed previously. The extended solvated polyNIPAAm-chains that are present below the lower critical solution temperature of this particular polymer are more hydrophilic, while the collapsed chains that prevail above the lower critical solution temperature are more hydrophobic. In contrast to isothermal separations in which the surface polarity remains constant throughout the run [ 136], HIC separation of proteins can be achieved at constant salt concentrations (isocratically) while utilizing the hydrophobic-hydrophilic... [Pg.120]


See other pages where CRITICAL CONCENTRATION TEMPERATURE is mentioned: [Pg.17]    [Pg.18]    [Pg.65]    [Pg.366]    [Pg.515]    [Pg.306]    [Pg.408]    [Pg.312]    [Pg.2138]    [Pg.102]    [Pg.500]    [Pg.553]    [Pg.44]    [Pg.427]    [Pg.973]    [Pg.129]    [Pg.75]    [Pg.282]    [Pg.601]    [Pg.27]    [Pg.28]    [Pg.512]    [Pg.156]    [Pg.1407]    [Pg.1947]    [Pg.14]    [Pg.189]    [Pg.24]    [Pg.278]    [Pg.278]    [Pg.113]    [Pg.348]    [Pg.315]    [Pg.48]    [Pg.645]   
See also in sourсe #XX -- [ Pg.93 ]




SEARCH



Critical concentration

Critical micelle concentration temperature

Critical micelle concentration temperature dependence used

Critical micelle concentration temperature effect

Critical temperatur

Critical, micelle concentration solution temperature

Temperature concentration

Temperature critical

© 2024 chempedia.info