Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Covalent centres

Ionic and covalent centres usually coexist [143], and their equilibrium proportions are a function of temperature, counter-ion type, quality of solvent and conversion. [Pg.195]

However, most impurities and defects are Jalm-Teller unstable at high-symmetry sites or/and react covalently with the host crystal much more strongly than interstitial copper. The latter is obviously the case for substitutional impurities, but also for interstitials such as O (which sits at a relaxed, puckered bond-centred site in Si), H (which bridges a host atom-host atom bond in many semiconductors) or the self-interstitial (which often fonns more exotic stmctures such as the split-(l lO) configuration). Such point defects migrate by breaking and re-fonning bonds with their host, and phonons play an important role in such processes. [Pg.2888]

The unmodified and complementary oligonucleotides were also synthesized, in order to detect thermodynamic and spectroscopic differences between the double helices. Circular dichroism spectra revealed that the covalently bound anthracene does not stack in the centre of the DNA double helix. Mutagenic activity by intercalative binding of the anthracene residue is thus unlikely. Only in vitro and in vivo replication experiments with site-specifically modified... [Pg.342]

The ultimate covalent ceramic is diamond, widely used where wear resistance or very great strength are needed the diamond stylus of a pick-up, or the diamond anvils of an ultra-high pressure press. Its structure, shown in Fig. 16.3(a), shows the 4 coordinated arrangement of the atoms within the cubic unit cell each atom is at the centre of a tetrahedron with its four bonds directed to the four corners of the tetrahedron. It is not a close-packed structure (atoms in close-packed structures have 12, not four, neighbours) so its density is low. [Pg.169]

If an atom or covalent molecule is placed in an electric field there will be a displacement of the light electron cloud in one direction and a considerably smaller displacement of the nucleus in the other direction (Figure 6.1 (b)). The effect of the electron cloud displacement is known as electron polarisation. In these circumstances the centres of negative and positive charge are no longer coincident. [Pg.111]

In all the groups along the chain, the bond angle is fixed. It is determined by considering a carbon atom at the centre of a regular tetrahedron and the four covalent bonds are in the directions of the four comers of the tetrahedron. This sets the bond angle at 109° 28 as shown in Fig. A.4 and this is called the tetrahedral angle. [Pg.414]

The third class of compounds to be discussed in this chapter are those in which an RE group (E = S, Se, Te) is attached to a nitrogen centre. This category includes amines of the type (REfsN and the related radicals [(RE)2N] , as well as organochalcogen(ir) azides, REN3, and nitrenes REN (E = S, Se). Covalent azides of the type RTe(N3)3 and R2Te(N3)2, in which the chalcogen is in the +4 oxidation state, have also been characterized. [Pg.181]

A common interpretation of the interaction of chalcogens with nucleophiles considers donation of electron density from a lone pair on the donor atom into the o- (E-X) orbital (Figure 15.1). As the degree of covalency increases, a hypervalent three-centre four-electron bond is formed. Real systems fall somewhere between secondary interactions and hypervalent (three centre - four electron) bonds. The two extremes can be distinguished by the correlation of X-E and E D distances.In the hypervalent case both bond distances decrease simultaneously, whereas in the secondary bond the distances are anticorrelated. This concept has been applied in a study of selenoquinones 15.17 (R = Ph, Me) with short Se 0 contacts,for... [Pg.299]

Attempts to classify carbides according to structure or bond type meet the same difficulties as were encountered with hydrides (p. 64) and borides (p. 145) and for the same reasons. The general trends in properties of the three groups of compounds are, however, broadly similar, being most polar (ionic) for the electropositive metals, most covalent (molecular) for the electronegative non-metals and somewhat complex (interstitial) for the elements in the centre of the d block. There are also several elements with poorly characterized, unstable, or non-existent carbides, namely the later transition elements (Groups 11 and 12), the platinum metals, and the post transition-metal elements in Group 13. [Pg.297]

The SUR-Kir6.2 complex is a non-covalently bonded octamer (4 x SUR/4 x Kir6.2), with the poreforming Kir6.2 channels located at the centre (Fig. 2). [Pg.117]

Two other theories as to the mechanism of the benzidine rearrangement have been advocated at various times. The first is the rc-complex mechanism first put forward and subsequently argued by Dewar (see ref. 1 pp 333-343). The theory is based on the heterolysis of the mono-protonated hydrazo compound to form a n-complex, i.e. the formation of a delocalised covalent it bond between the two rings which are held parallel to each other. The rings are free to rotate and product formation is thought of as occurring by formation of a localised a-bond between appropriate centres. Originally the mechanism was proposed for the one-proton catalysis but was later modified as in (18) to include two-protons, viz. [Pg.446]

The data indicate that the formation of cyclic intermediates creates a stabilization of the cationic chain ends (AH° < 0 and AH s < 0), also expressed by a decrease of both the acceptor strength (Ae(LUMO) > 0) and the donor strength (Ae(HOMO) < 0) of the cations. The positive charge of the cationic centre is distinctly decreased (Aqc+ < 0) as a consequence of the interaction of this centre with the oxygen of the methoxy group. A partially covalent C + —O-bond is formed (pt Q(f) > 0.6 rc+ 0if) 146 pm). [Pg.206]

Aqc the alteration of the atomic charge at the C-atom of the original methyl group during the transfer into the covalent species as a measure of the charge transfer from the anion to the cationic centre (qc(CH3+) = 0.419) ... [Pg.213]

Let us now examine the consequences of the formation of a donor-acceptor bond in a little more detail. If the donor - acceptor bond is completely covalent, then we record net transfer of one unit of charge from the donor to the acceptor as a direct consequence of the equal sharing of the electron pair between the two centres. This result leaves a positive charge on the donor atom and a negative charge on the acceptor atom. The limiting ionic and covalent descriptions of a complex cation such as [Fe(H20)6] are shown in Fig. 1-1. [Pg.14]

There is an interesting paradox in transition-metal chemistry which we have mentioned earlier - namely, that low and high oxidation state complexes both tend towards a covalency in the metal-ligand bonding. Low oxidation state complexes are stabilized by r-acceptor ligands which remove electron density from the electron rich metal center. High oxidation state complexes are stabilized by r-donor ligands which donate additional electron density towards the electron deficient metal centre. [Pg.184]

Different fields within chemistry have developed their own specialist forms of symbolism. Organic chemistry uses a range of symbols in representations that learners need to make sense of For example, minimal structural representation in organic chemistry (where stractiues may be extensive) uses a formalism that a fine represents two carbon atomic centres joined by a single covalent bond, and saturated with hydrogen except where shown otherwise. [Pg.82]

In practice one can differentiate between two kinds of donors, the resulting donor-acceptor bonds can be largely ionic (class I) or covalent (class II) [16]. Donors of the first type (class I) stem from the first row of the periodic table of elements, such as amines, ethers, in detail structures in which the Lewis basis centre possessing the non-bonding lone pair is strong electronegative. Donors of the second type are constituted from elements of the second row of the periodic table of elements, such as phosphines, thioethers, etc. (class II). These Lewis donors are... [Pg.77]

In the structure 24a, the triphenylphosphine is strongly bound to the electrophilic phosphorus centre (PP=2.206A) which indicates a strong covalent character of this bond. Upon warming the solution to 20 °C decomposition takes place and a mixture of bicyclotetraphosphanes is formed. Interestingly, some structural trends towards the formation of ion pairs between a donor and an acceptor were also reported in the push-puU diphosphene structures 25-27 [69] (Fig. 4). [Pg.86]

Cross-linked gel-type functional polymers (CFPs) are organic materials built up with interconnected polymer chains [1]. Pendants hanging from the polymer chains may render CFPs reactive materials particularly suitable for anchoring metal centres removed from a liquid phase, by means of covalent or ionic bonds [2] ... [Pg.413]


See other pages where Covalent centres is mentioned: [Pg.195]    [Pg.195]    [Pg.195]    [Pg.195]    [Pg.102]    [Pg.1611]    [Pg.1774]    [Pg.436]    [Pg.1]    [Pg.5]    [Pg.236]    [Pg.65]    [Pg.66]    [Pg.111]    [Pg.168]    [Pg.175]    [Pg.257]    [Pg.619]    [Pg.922]    [Pg.1278]    [Pg.357]    [Pg.278]    [Pg.378]    [Pg.5]    [Pg.14]    [Pg.14]    [Pg.15]    [Pg.34]    [Pg.80]    [Pg.77]    [Pg.64]   


SEARCH



© 2024 chempedia.info