Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Octet rule covalent bonds

Protonated methane (CH ) does not violate the octet rule of carbon. A bonding electron pair (responsible for covalent bonding between C and H atoms) is forced into sharing with the proton, resulting in 2 electron-3 center bonding (2e-3c) (see Chapter 10). Higher alkanes are protonated similarly. [Pg.100]

It will always be true that a nitrogen with four covalent bonds has a formal charge of + 1 (A nitrogen with four co valent bonds cannot have unshared pairs because of the octet rule)... [Pg.18]

Section 1 3 The most common kind of bonding involving carbon is covalent bond ing A covalent bond is the sharing of a pair of electrons between two atoms Lewis structures are written on the basis of the octet rule, which limits second row elements to no more than eight electrons m their valence shells In most of its compounds carbon has four bonds... [Pg.47]

Lewis structure (Section 1 3) A chemical formula in which electrons are represented by dots Two dots (or a line) be tween two atoms represent a covalent bond in a Lewis structure Unshared electrons are explicitly shown and sta ble Lewis structures are those in which the octet rule is sat isfied... [Pg.1287]

Note that these compounds are covalently bonded compounds containing only hydrogen and carbon. The differences in their strucmral formulas are apparent the alkanes have only single bonds in their structural formulas, while the alkenes have one (and only one) double bond in their structural formulas. There are different numbers of hydrogen atoms in the two analogous series. This difference is due to the octet rule that carbon must satisfy. Since one pair of carbon atoms shares a double bond, this fact reduces the number of electrons the carbons need (collectively) by two, so there are two fewer hydrogen atoms in the alkene than in the corresponding alkane. [Pg.187]

These examples illustrate the principle that atoms in covalently bonded species tend to have noble-gas electronic structures. This generalization is often referred to as the octet rule. Nonmetals, except for hydrogen, achieve a noble-gas structure by sharing in an octet of electrons (eight). Hydrogen atoms, in molecules or polyatomic ions, are surrounded by a duet of electrons (two). [Pg.168]

In 1923. Lewis published a classic book (later reprinted by Dover Publications) titled Valence and the Structure of Atoms and Molecules. Here, in Lewis s characteristically lucid style, we find many of the basic principles of covalent bonding discussed in this chapter. Included are electron-dot structures, the octet rule, and the concept of electronegativity. Here too is the Lewis definition of acids and bases (Chapter 15). That same year, Lewis published with Merle Randall a text called Thermodynamics and the Free Energy of Chemical Substances. Today, a revised edition of that text is still used in graduate courses in chemistry. [Pg.174]

Each carbon atom forms a total of four covalent bonds. This is illustrated by the struc- Carbon always follows the octet rule in... [Pg.579]

When ionic bonds form, the atoms of one element lose electrons and the atoms of the second element gain them until both types of atoms have reached a noble-gas configuration. The same idea can be extended to covalent bonds. However, when a covalent bond forms, atoms share electrons until they reach a noble-gas configuration. Lewis called this principle the octet rule ... [Pg.189]

There are also molecules that are exceptions to the octet rule because one of the atoms has fewer, rather than more than, eight electrons in its valence shell in the Lewis structure (Figure 1.19). These molecules are formed by the elements on the left-hand side of the periodic table that have only one, two, or three electrons in their valence shells and cannot therefore attain an octet by using each of their electrons to form a covalent bond. The molecules LiF, BeCl2, BF3, and AIC13 would be examples. However, as we have seen and as we will discuss in detail in Chapters 8 and 9, these molecules are predominately ionic. In terms of a fully ionic model, each atom has a completed shell, and the anions obey the octet rule. Only if they are regarded as covalent can they be considered to be exceptions to the octet rule. Covalent descriptions of the bonding in BF3 and related molecules have therefore... [Pg.22]

It is difficult to give a localized orbital description of the bonding in a period 3 hypervalent molecule that is based only on the central atom 3s and 3p orbitals and the ligand orbitals, that is, a description that is consistent with the octet rule. One attempt to do this postulated a new type of bond called a three-center, four-electron (3c,4e) bond. We discuss this type of bond in Box 9.2, where we show that it is not a particularly useful concept. Pauling introduced another way to describe the bonding in these molecules, namely, in terms of resonance structures such as 3 and 4 in which there are only four covalent bonds. The implication of this description is that since there are only four cova-... [Pg.225]

In Chap. 3 the elementary structure of the atom was introduced. The facts that protons, neutrons, and electrons are present in the atom and that electrons are arranged in shells allowed us to explain isotopes (Chap. 3), the octet rule for main group elements (Chap. 5), ionic and covalent bonding (Chap. 5), and much more. However, we still have not been able to deduce why the transition metal groups and inner transition metal groups arise, why many of the transition metals have ions of different charges, how the shapes of molecules are determined, and much more. In this chapter we introduce a more detailed description of the electronic structure of the atom which begins to answer some of these more difficult questions. [Pg.251]

NH4)2S04 is an ionic solid composed of covalently bonded polyatomic ions both obey the octet rule ... [Pg.113]

Atoms tend to acquire a noble gas configuration either by forming ions or by sharing electrons in covalent bonds. The tendency of atoms to acquire eight valence electrons is known as the octet rule. [Pg.42]

A Lewis structure can show the bonding pattern in a covalent compound. In Lewis formulas, we show the valence electrons that are not involved in bonding as dots surrounding the element symbols. The valence electrons involved in bonding are present as dashes. There are several ways of deriving the Lewis structure, but here is one that works well for most compounds that obey the octet rule. [Pg.133]

The krypton atom in krypton difluoride does not obey the octet rule. The presence of five pair around the krypton leads to a trigonal bipyramidal electron-group geometry. The presence of three lone pairs and two bonding pairs around the krypton makes the molecule linear. The two krypton-fluorine bonds are polar covalent. However, in a linear molecule, the bond polarities pull directly against each other and cancel. Cancelled bond polarities make the molecule nonpolar. The strongest intermolecular force in the nonpolar krypton difluoride is London force. [Pg.167]


See other pages where Octet rule covalent bonds is mentioned: [Pg.107]    [Pg.107]    [Pg.99]    [Pg.81]    [Pg.12]    [Pg.13]    [Pg.18]    [Pg.3]    [Pg.187]    [Pg.12]    [Pg.13]    [Pg.18]    [Pg.24]    [Pg.78]    [Pg.804]    [Pg.232]    [Pg.133]    [Pg.159]    [Pg.23]    [Pg.128]    [Pg.112]    [Pg.12]    [Pg.17]    [Pg.230]    [Pg.89]    [Pg.89]    [Pg.363]    [Pg.344]    [Pg.141]    [Pg.363]    [Pg.272]   
See also in sourсe #XX -- [ Pg.75 ]

See also in sourсe #XX -- [ Pg.259 , Pg.261 ]




SEARCH



Bond rule

Bond/Bonding octet rule

Covalent Bonds, Lewis Formulas, and the Octet Rule

Covalent Bonds, Lewis Structures, and the Octet Rule

Covalent bond octet rule exceptions

Ionic and Covalent Bonds The Octet Rule

Octet

Octet rule

Octet rule bonding

Rules octet rule

Sulfur covalent bonding, octet rule

© 2024 chempedia.info