Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Covalent bond principles

The peptide linkage is usually portrayed by a single bond between the carbonyl carbon and the amide nitrogen (Figure 5.3a). Therefore, in principle, rotation may occur about any covalent bond in the polypeptide backbone because all three kinds of bonds (N——C, and the —N peptide bond) are sin-... [Pg.108]

DNA synthesizers operate on a principle similar to that of the Merrifield solid-phase peptide synthesizer (Section 26.8). In essence, a protected nucleotide is covalently bonded to a solid support, and one nucleotide at a time is added to the growing chain by the use of a coupling reagent. After the final nucleotide has been added, all the protecting groups are removed and the synthetic DNA is cleaved from the solid support. Five steps are needed ... [Pg.1114]

These examples illustrate the principle that atoms in covalently bonded species tend to have noble-gas electronic structures. This generalization is often referred to as the octet rule. Nonmetals, except for hydrogen, achieve a noble-gas structure by sharing in an octet of electrons (eight). Hydrogen atoms, in molecules or polyatomic ions, are surrounded by a duet of electrons (two). [Pg.168]

In 1923. Lewis published a classic book (later reprinted by Dover Publications) titled Valence and the Structure of Atoms and Molecules. Here, in Lewis s characteristically lucid style, we find many of the basic principles of covalent bonding discussed in this chapter. Included are electron-dot structures, the octet rule, and the concept of electronegativity. Here too is the Lewis definition of acids and bases (Chapter 15). That same year, Lewis published with Merle Randall a text called Thermodynamics and the Free Energy of Chemical Substances. Today, a revised edition of that text is still used in graduate courses in chemistry. [Pg.174]

In principle, any molecule or anion with an unshared pair of electrons can act as a Lewis base. In other words, it can donate a lone pair to a metal cation to form a coordinate covalent bond. In practice, a ligand usually contains an atom of one of die more electronegative elements (C, N, O, S, F, Cl, Br, I). Several hundred different ligands are known. Those most commonly encountered in general chemistry are NH3 and HzO molecules and CN , Cl-, and OH- ions. [Pg.411]

We see again that there is but one principle which causes a chemical bond between two atoms all chemical bonds form because electrons are placed simultaneously near two positive nuclei. The term covalent bond indicates that the most stable distribution of the electrons (as far as energy is concerned) is symmetrical between the two atoms. When the bonding electrons are somewhat closer to one of the atoms than the other, the bond is said to have ionic character. The term ionic bond indicates the electrons are displaced so much toward one atom that it is a good approximation to represent the bonded... [Pg.288]

When ionic bonds form, the atoms of one element lose electrons and the atoms of the second element gain them until both types of atoms have reached a noble-gas configuration. The same idea can be extended to covalent bonds. However, when a covalent bond forms, atoms share electrons until they reach a noble-gas configuration. Lewis called this principle the octet rule ... [Pg.189]

The development during the past year of a statistical theory of unsynchronized resonance of covalent bonds in a metal, with atoms restricted by the electroneutrality principle to forming bonds only in number u — 1, u, and v + 1, with u the metallic valence, has led directly to the value 0.70 0.02 for the number of metallic orbitals per atom.39 This theory also has led to the conclusions that stability of a metal or alloy increases with increase in the ligancy and that for a given value of the ligancy, stability is a maxi-... [Pg.330]

Abstract The immobilization of chiral catalysts through non-covalent methods, as opposed to covalent immobilization, allows an easier preparation of chiral heterogeneous catalysts with, in principle, less influence of the support on the conformational preferences of the catalytic complex. In this review the different possibilities for immobilization without forming a covalent bond between the chiral diazahgand and the support, which can be either solid or liquid, are presented. [Pg.149]

In principle this is the method that gives rise to the strongest support-complex interaction. We have considered in this category all the methods in which the support compensates for at least one of the charges of the complex, usually due to the metal, although without considering the exact nature of the metal-support bond, i.e., purely ionic or polarized covalent. In any case, the only possible covalent bond between support and complex would be estabhshed with the metal center, not with the chiral hgand. [Pg.152]

The structure of a molecule depends essentially on the covalent bond forces acting between its atoms. In the first place, they determine the constitution of the molecule, that is, the sequence of the linkage of the atoms. The constitution can be expressed in a simple way by means of the valence bond formula. For a given constitution the atoms arrange themselves in space according to certain principles. These include atoms not bonded directly with one another may not come too close (repulsion of interpenetrating electron shells) and the valence electron pairs of an atom keep as far apart as possible from each other. [Pg.62]


See other pages where Covalent bond principles is mentioned: [Pg.7]    [Pg.40]    [Pg.363]    [Pg.35]    [Pg.148]    [Pg.35]    [Pg.49]    [Pg.62]    [Pg.470]    [Pg.350]    [Pg.323]    [Pg.415]    [Pg.558]    [Pg.14]    [Pg.78]    [Pg.4]    [Pg.152]    [Pg.396]    [Pg.406]    [Pg.458]    [Pg.617]    [Pg.619]    [Pg.832]    [Pg.97]    [Pg.159]    [Pg.183]    [Pg.185]    [Pg.174]    [Pg.240]    [Pg.154]    [Pg.116]    [Pg.358]    [Pg.233]    [Pg.135]    [Pg.252]    [Pg.36]    [Pg.504]    [Pg.14]   
See also in sourсe #XX -- [ Pg.150 ]




SEARCH



What are the principle geometrical consequences of ionic, covalent and metallic bonding

© 2024 chempedia.info