Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Correlations nematic

Furtlier details can be found elsewhere [20, 78, 82 and 84]. An approach to tire dynamics of nematics based on analysis of microscopic correlation fimctions has also been presented [85]. Various combinations of elements of tire viscosity tensor of a nematic define tire so-called Leslie coefficients [20, 84]. [Pg.2558]

Fig. 29. Observed and calculated 2H NMR spectra for the mesogenic groups of a) the nematic (m = 2), b) the smectic (m = 6) liquid crystalline polymer in the glassy state, showing the line shape changes due to the freezing of the jump motion of the labelled phenyl ring. The exchange frequency corresponds to the centre of the distribution of correlation times. Note that the order parameters are different, S = 0.65 in the frozen nematic, and S = 0.85 in the frozen smectic system, respectively... Fig. 29. Observed and calculated 2H NMR spectra for the mesogenic groups of a) the nematic (m = 2), b) the smectic (m = 6) liquid crystalline polymer in the glassy state, showing the line shape changes due to the freezing of the jump motion of the labelled phenyl ring. The exchange frequency corresponds to the centre of the distribution of correlation times. Note that the order parameters are different, S = 0.65 in the frozen nematic, and S = 0.85 in the frozen smectic system, respectively...
One of the primary features of the Gay-Berne potential is the presence of anisotropic attractive forces which should allow the observation of thermally driven phase transitions and this has proved to be the case. Thus using the parametrisation proposed by Gay and Berne, Adams et al. [9] showed that GB(3.0, 5.0, 2, 1) exhibits both nematic and isotropic phases on varying the temperature at constant density. This was chosen to be close to the transitional density for hard ellipsoids with the same ellipticity indeed it is generally the case that to observe a nematic-isotropic transition for Gay-Berne mesogens the density should be set in this way. The long range orientational order of the phase was established from the non-zero values of the orientational correlation coefficient, G2(r), at large separations and the translational disorder was apparent from the radial distribution function. [Pg.83]

Smectic phases are more highly ordered than nematic phases, and with an ordering of the molecules into layers. There are a number of different smectic phases which reflect differing degree of ordering. Crystal smectic phases are characterised by the appearance of inter-layer structural correlations and may in some cases be accompanied by a loss of molecular rotational freedom. [Pg.268]

The liquid crystal phases of calamitic mesogens fall into two types - nematic (N) and smectic (Sm). The nematic phase is the most disordered of the liquid crystal phases and possesses only orientational order, so that the long axes of the molecules are correlated in one direction (known as the director, n) while being positioned randomly (Fig. 2A). There are several smectic phases and these differ from the nematic phase in possessing partial posi-... [Pg.173]

A nematic phase of discotic molecules exists where the short molecular axes are correlated directionally but this phase is still rather rare. By far and away the most common behaviour is for the molecules to stack in columns, which are then arranged in a particular way with respect to one another [7]. Examples are given in Fig. 4. [Pg.175]

Several structure sizes caused by microphase separation occurring in the induction period as well as by crystallization were determined as a function of annealing time in order to determine how crystallization proceeds [9,18]. The characteristic wavelength A = 27r/Qm was obtained from the peak positions Qm of SAXS while the average size of the dense domains, probably having a liquid crystalline nematic structure as will be explained later, was estimated as follows. The dense domain size >i for the early stage of SD was calculated from the spatial density correlation function y(r) defined by Debye and Buche[50]... [Pg.200]

As mentioned in the introduction, the first empirical correlation between the absolute configuration of dopants and the handedness of induced cholesterics was proposed in 1975.20 The first attempt to find a general correlation was a few years later Krabbe et al.58 related the sense of the cholesteric to a stereochemical descriptor of the dopant based on the effective volume of the substituents and listed many compounds following this rule. However, exceptions were described at that time,59 and, furthermore, this approach neglects the role of the structure of the nematic solvent in determining the sense of the cholesteric. It is well known that chiral compounds may induce cholesterics of opposite handedness in different nematics.60,61... [Pg.442]

When r s, one has interconversion between operators Br and Bs, and Rrs is a cross-relaxation rate. Note that the cross-relaxation may or may not contain interference effects depending on the indices l and /, which keep track of interactions Cyj and C,. Cross-correlation rates and cross-relaxation rates have not been fully utilized in LC. However, there is a recent report41 on this subject using both the 13C chemical shielding anisotropy and C-H dipolar coupling relaxation mechanisms to study a nematic, and this may be a fruitful arena in gaining dynamic information for LC. We summarize below some well known (auto-)relaxation rates for various spin interactions commonly encountered in LC studies. [Pg.78]

The dry nematic solution exhibits a smooth texture after being annealed, with a field of disclinations at any glass-solution interface. A nematic phase produced by cooling the isotropic phase will exhibit a complex, mottled texture that slowly anneals to the smooth texture. The ratio Rvv(q)/ Hv(q) (for e = 20 deg.) for either morphology indicates appreciable orientational averaging of the orientation fluctuation. Photon correlation scattering on the... [Pg.149]

Note 4 The extent of the positional correlations for the molecules in a nematic phase is comparable to that of an isotropic phase although the distribution function is necessarily anisotropic. [Pg.102]

More-definitive structural correlations have been established in the nematic-cholesteric systems. Following Gray (1983), we summarize them below ... [Pg.394]


See other pages where Correlations nematic is mentioned: [Pg.2023]    [Pg.2023]    [Pg.2543]    [Pg.2559]    [Pg.306]    [Pg.77]    [Pg.6]    [Pg.7]    [Pg.51]    [Pg.75]    [Pg.87]    [Pg.87]    [Pg.95]    [Pg.97]    [Pg.101]    [Pg.115]    [Pg.116]    [Pg.154]    [Pg.205]    [Pg.213]    [Pg.128]    [Pg.140]    [Pg.451]    [Pg.99]    [Pg.101]    [Pg.116]    [Pg.121]    [Pg.588]    [Pg.588]    [Pg.128]    [Pg.307]    [Pg.143]    [Pg.35]    [Pg.211]    [Pg.405]    [Pg.306]    [Pg.130]   
See also in sourсe #XX -- [ Pg.59 ]




SEARCH



© 2024 chempedia.info