Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Correlations Hydrocarbons

Clements and Colver developed the modified Nusselt equation to correlate hydrocarbon and hydrocarbon mixtures in turbulent film condensation ... [Pg.132]

Extensive data and bibliography on hydrocarbons a few predictive correlations are also given. [Pg.7]

A correlation between retention times and boiling points is established by calibration with a known mixture of hydrocarbons, usually normal paraffins, whose boiling points are known (see Figure 2.2). From this information, the distribution of boiling points of the sample mixture is obtained. [Pg.21]

Edmister, W.C. and K.K. Okamoto (1959), Applied hydrocarbon thermodynamics. Part 12 equilibrium flash vaporization correlations for petroleum fractions . Petroleum Refiner, Vol. 38, No. 8, p. 117. [Pg.455]

The z-factor must be determined empirically (i.e. by experiment), but this has been done for many hydrocarbon gases, and correlation charts exist for the approximate determination of the z factor at various conditions of pressure and temperature. (Ref. Standing, M.B. and Katz, D.L., Density of natural gases, Trans. AIME, 1942). [Pg.106]

Under certain conditions of temperature and pressure, and in the presence of free water, hydrocarbon gases can form hydrates, which are a solid formed by the combination of water molecules and the methane, ethane, propane or butane. Hydrates look like compacted snow, and can form blockages in pipelines and other vessels. Process engineers use correlation techniques and process simulation to predict the possibility of hydrate formation, and prevent its formation by either drying the gas or adding a chemical (such as tri-ethylene glycol), or a combination of both. This is further discussed in SectionlO.1. [Pg.108]

SWS are useful to obtain direct indications of hydrocarbons (under UV light) and to differentiate between oil and gas. The technique is applied extensively to sample microfossils and pollen for stratigraphic analysis (age dating, correlation, depositional environment). Qualitative inspection of porosity is possible, but very often the sampling process results in a severe crushing of the sample thus obscuring the true porosity and permeability. [Pg.129]

The data gathered from the logs and cores of the development wells are used to refine the correlation, and better understand areal and vertical changes in the reservoir quality. Core material may also be used to support log data in determining the residual hydrocarbon saturation left behind in a swept zone (e.g. the residual oil saturation to water flooding). [Pg.333]

It is of particular interest to be able to correlate solubility and partitioning with the molecular stmcture of the surfactant and solute. Likes dissolve like is a well-wom plirase that appears applicable, as we see in microemulsion fonnation where reverse micelles solubilize water and nonnal micelles solubilize hydrocarbons. Surfactant interactions, geometrical factors and solute loading produce limitations, however. There appear to be no universal models for solubilization that are readily available and that rest on molecular stmcture. Correlations of homologous solutes in various micellar solutions have been reviewed by Nagarajan [52]. Some examples of solubilization, such as for polycyclic aromatics in dodecyl sulphonate micelles, are driven by hydrophobic... [Pg.2592]

The purpose of this eornpuLer project is Lo examine several polynuclear aromatic hydrocarbons and to relate their electron density patterns to their carcinogenic activity. If nucleophilic binding to DN.A is a significant step in blocking the normal transcription process of DN.A, electron density in the hydrocarbon should be positively correlated to its carcinogenic potency. To begin with, we shall rely on clinical evidence that benzene, naphthalene, and phenanthrene... [Pg.291]

One approach, using a local density approximation for each part, has E - = Es -1- Evwn, where Eg is a Slater functional and Evwn is a correlation functional from Vosko, Wilk, and Nusair (1980). Both functionals in this treatment assume a homogeneous election density. The result is unsatisfactory, leading to enors of more than 50 kcal mol for simple hydrocarbons. [Pg.328]

Reactivity numbers of the most reactive positions have been used to correlate the reactivities in nitration (see below) and other substitutions of a series of polycyclic aromatic hydrocarbons, and they give somewhat better correlations than any of the other commonly used indices of reactivity. The relationship shown below, which was discussed earlier ( 7.1.1),... [Pg.132]

Most correlations of rates with localisation energies have used values for the latter derived from the Hiickel approximation. More advanced methods of m.o. theory can, of course, be used, and fig. 7.1 illustrates plots correlating data for the nitration of polynuclear hydrocarbons in acetic anhydride -" with localisation energies derived from self-... [Pg.133]

Gas solubihty has been treated extensively (7). Methods for the prediction of phase equiUbria and actual solubiUty data have been given (8,9) and correlations of the equiUbrium iC values of hydrocarbons have been developed and compiled (10). Several good sources for experimental information on gas— and vapor—hquid equiUbrium data of nonideal systems are also available (6,11,12). [Pg.20]

When Raoult s law apphes, this becomes = Pi /P. In general, K-values are functions of T, P, liquid composition, and vapor composition, making their direct and accurate correlation impossible. Those correlations that do exist are approximate and severely hmited in apphcation. The DePriester correlation, for example, gives i< -values for hght hydrocarbons (Chem. Png. Prog. Symp. Sen No. 7, 49, pp. 1 3 [1953]). [Pg.538]

Dilute Binary Hydrocarbon Mixtures Hayduk-Minhas presented an accurate correlation for normal paraffin mixtures that was developed from 58 data points consisting or solutes from C5 to C32 and solvents from C5 to Cig. The average error was 3.4 percent for the 58 mixtures. [Pg.598]

As discussed in Sec. 4, the icomplex function of temperature, pressure, and equilibrium vapor- and hquid-phase compositions. However, for mixtures of compounds of similar molecular structure and size, the K value depends mainly on temperature and pressure. For example, several major graphical ilight-hydrocarbon systems. The easiest to use are the DePriester charts [Chem. Eng. Prog. Symp. Ser 7, 49, 1 (1953)], which cover 12 hydrocarbons (methane, ethylene, ethane, propylene, propane, isobutane, isobutylene, /i-butane, isopentane, /1-pentane, /i-hexane, and /i-heptane). These charts are a simplification of the Kellogg charts [Liquid-Vapor Equilibiia in Mixtures of Light Hydrocarbons, MWK Equilibnum Con.stants, Polyco Data, (1950)] and include additional experimental data. The Kellogg charts, and hence the DePriester charts, are based primarily on the Benedict-Webb-Rubin equation of state [Chem. Eng. Prog., 47,419 (1951) 47, 449 (1951)], which can represent both the liquid and the vapor phases and can predict K values quite accurately when the equation constants are available for the components in question. [Pg.1248]

Feed analyses in terms of component concentrations are usually not available for complex hydrocarbon mixtures with a final normal boihng point above about 38°C (100°F) (/i-pentane). One method of haudhug such a feed is to break it down into pseudo components (narrow-boihng fractions) and then estimate the mole fraction and value for each such component. Edmister [2nd. Eng. Chem., 47,1685 (1955)] and Maxwell (Data Book on Hydrocarbons, Van Nostrand, Princeton, N.J., 1958) give charts that are useful for this estimation. Once values are available, the calculation proceeds as described above for multicomponent mixtures. Another approach to complex mixtures is to obtain an American Society for Testing and Materials (ASTM) or true-boihng point (TBP) cui ve for the mixture and then use empirical correlations to con-strucl the atmospheric-pressure eqiiihbrium-flash cui ve (EF 0, which can then be corrected to the desired operating pressure. A discussion of this method and the necessary charts are presented in a later subsection entitled Tetroleum and Complex-Mixture Distillation. ... [Pg.1264]

Maxwell s correlation was generated from hydrocarbon data only. Ludwig states that the Drickamer and Bradford correlation is good for hydrocarbons, chlorinated hydrocarbons, glycols, glycerine and related compounds, and some rich hydrocarbon absorbers and strippers. [Pg.55]

As an example of this technique, the estimated equipment costs for a large coal gasification project have been correlated and programmed for a computer. Thus, it is vei7 easy to get the cost of any one piece, or of many pieces of equipment, for a coal gasification or hydrocarbon processing project once the specification sheets are completed. [Pg.232]


See other pages where Correlations Hydrocarbons is mentioned: [Pg.560]    [Pg.560]    [Pg.67]    [Pg.266]    [Pg.136]    [Pg.2420]    [Pg.137]    [Pg.8]    [Pg.130]    [Pg.132]    [Pg.133]    [Pg.135]    [Pg.135]    [Pg.240]    [Pg.285]    [Pg.286]    [Pg.171]    [Pg.52]    [Pg.342]    [Pg.541]    [Pg.209]    [Pg.515]    [Pg.466]    [Pg.61]    [Pg.253]    [Pg.1254]    [Pg.1256]    [Pg.1324]    [Pg.1327]    [Pg.1372]    [Pg.2301]    [Pg.22]   
See also in sourсe #XX -- [ Pg.246 ]




SEARCH



© 2024 chempedia.info