Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Coordination Ruthenium complexes

Ruthenium and osmium carbene complexes possess metal centers that are formally in the +2 oxidation state, have an electron count of 16 and are penta-coordinated. Ruthenium complexes exhibit a higher catalytic activity when an imidazole carbene ligand is coordinated to the ruthenium metal center (21). [Pg.8]

In the above four-coordinate ruthenium complex, the ruthenium has the ds configuration and is unsaturated, and hence tends to form a saturated six-coordinate d6 complex. This tendency is certainly the driving force of the C-H bond splitting. These C-H bond splittings show interesting possibilities from the standpoint of organic synthesis. [Pg.46]

Imidazole is characterized mainly by the T) (N) coordination mode, where N is the nitrogen atom of the pyridine type. The rare coordination modes are T) - (jt-) realized in the ruthenium complexes, I-ti (C,N)- in organoruthenium and organoosmium chemistry. Imidazolium salts and stable 1,3-disubsti-tuted imidazol-2-ylidenes give a vast group of mono-, bis-, and tris-carbene complexes characterized by stability and prominent catalytic activity. Benzimidazole follows the same trends. Biimidazoles and bibenzimidazoles are ligands as the neutral molecules, mono- and dianions. A variety of the coordination situations is, therefore, broad, but there are practically no deviations from the expected classical trends for the mono-, di-, and polynuclear A -complexes. [Pg.167]

The reaction of the coordinatively unsaturated ruthenium amidinates with [Cp RuCl]4 tetramer or [CpRufMeCNlsJPFg provides access to novel amidinate-bridged dinuclear ruthenium complexes (Scheme 146), which in turn can be transformed into cationic complexes or hydride derivatives. In these complexes, a bridging amidinate ligand perpendicular to the metal-metal axis effectively stabilizes the highly reactive cationic diruthenium species. [Pg.282]

Zhang et al. [49] prepared a chiral ruthenium complex coordinated by a pyridine-bis(imine) ligand (structure 43 in Scheme 21). [Pg.109]

There are more examples of a second type in which the chirality of the metal center is the result of the coordination of polydentate ligands. The easiest case is that of octahedral complexes with at least two achiral bidentate ligands coordinated to the metal ion. The prototype complex with chirality exclusively at the metal site is the octahedral tris-diimine ruthenium complex [Ru(diimine)3 with diimine = bipyridine or phenanthroline. As shown in Fig. 2 such a complex can exist in two enantiomeric forms named A and A [6,7]. The bidentate ligands are achiral and the stereoisomery results from the hehcal chirality of the coordination and the propeller shape of the complex. The absolute configuration is related to the handness of the hehx formed by the hgands when rotated... [Pg.273]

Ruthenium complexes containing this ligand are able to reduce a variety of double bonds with e.e. above 95%. In order to achieve high enantioselectivity, the reactant must show a strong preference for a specific orientation when complexed with the catalyst. This ordinarily requires the presence of a functional group that can coordinate with the metal. The ruthenium-BINAP catalyst has been used successfully with unsaturated amides,23 allylic and homoallylic alcohols,24 and unsaturated carboxylic acids.25... [Pg.378]

Besides ruthenium porphyrins (vide supra), several other ruthenium complexes were used as catalysts for asymmetric epoxidation and showed unique features 114,115 though enantioselectivity is moderate, some reactions are stereospecific and treats-olefins are better substrates for the epoxidation than are m-olcfins (Scheme 20).115 Epoxidation of conjugated olefins with the Ru (salen) (37) as catalyst was also found to proceed stereospecifically, with high enantioselectivity under photo-irradiation, irrespective of the olefmic substitution pattern (Scheme 21).116-118 Complex (37) itself is coordinatively saturated and catalytically inactive, but photo-irradiation promotes the dissociation of the apical nitrosyl ligand and makes the complex catalytically active. The wide scope of this epoxidation has been attributed to the unique structure of (37). Its salen ligand adopts a deeply folded and distorted conformation that allows the approach of an olefin of any substitution pattern to the intermediary oxo-Ru species.118 2,6-Dichloropyridine IV-oxide (DCPO) and tetramethylpyrazine /V. V -dioxide68 (TMPO) are oxidants of choice for this epoxidation. [Pg.222]

Wave length and intensity of the emission depend on the concentration and the ligands of the coordinated zinc species. The authors suggest that a reverse influence, namely the tuning of the zinc-ethyl bond by the ruthenium complex, may also be possible. [Pg.335]

The alkylation of the sp3 C-H bonds adjacent to a heteroatom becomes more practical when the chelation assistance exists in the reaction system. The ruthenium-catalyzed alkylation of the sp3, C-H bond occurs in the reaction of benzyl(3-methylpyridin-2-yl)amine with 1-hexene (Equation (30)).35 The coordination of the pyridine nitrogen to the ruthenium complex assists the C-H bond cleavage. The ruthenium-catalyzed alkylation is much improved by use of 2-propanol as a solvent 36 The reaction of 2-(2-pyrrolidyl)pyridine with ethene affords the double alkylation product (Equation (31)). [Pg.219]

The chemistry of ruthenium has been reviewed in COMC (1982) and COMC (1995)338 339 as well as in Comprehensive Coordination Chemistry II. More recent reviews summarize the synthesis, properties, and applications of diruthenium tetracarboxylates341 as well as ruthenium catalysis in organic synthesis in general.342 Most recent developments and applications of ruthenium complexes in organic synthesis have been reviewed up to 2004.343... [Pg.440]

The proposed mechanisms are similar in both cases and involve in particular an (aryl)(hydrido)ruthenium intermediate in which the ruthenium is additionally coordinated by an in. ( ////-generated /V-phenylimine moiety tethered to the same Ru-bound aromatic ring. The C-C bond-forming step for the construction of the corresponding heterocyclic framework proceeds via insertion of the C=N double bond into the C-Ru bond with transfer of the (hydrido) ruthenium complex to the now phenylamine nitrogen. The desired heterocycles 158 and 159 were obtained after successive reductive elimination, deamination, and dehydrogenation. [Pg.442]

This transformation proceeds through coordination of the isocyanide group to the ruthenium complex (structure 172), followed by insertion of the C-bound ruthenium into the benzylic C-H bond (intermediate 173). After ruthenium-mediated addition of the benzylic carbon to the isonitrile carbon and tautomerization, the desired product was obtained via elimination of the ruthenium complex. [Pg.445]


See other pages where Coordination Ruthenium complexes is mentioned: [Pg.23]    [Pg.600]    [Pg.71]    [Pg.159]    [Pg.424]    [Pg.284]    [Pg.26]    [Pg.587]    [Pg.600]    [Pg.52]    [Pg.53]    [Pg.26]    [Pg.23]    [Pg.600]    [Pg.71]    [Pg.159]    [Pg.424]    [Pg.284]    [Pg.26]    [Pg.587]    [Pg.600]    [Pg.52]    [Pg.53]    [Pg.26]    [Pg.111]    [Pg.198]    [Pg.28]    [Pg.369]    [Pg.73]    [Pg.204]    [Pg.271]    [Pg.274]    [Pg.94]    [Pg.141]    [Pg.733]    [Pg.260]    [Pg.145]    [Pg.153]    [Pg.43]    [Pg.611]    [Pg.367]    [Pg.26]    [Pg.27]    [Pg.218]    [Pg.174]    [Pg.154]    [Pg.74]    [Pg.52]   
See also in sourсe #XX -- [ Pg.304 ]




SEARCH



Ruthenium catalysts coordination complexes

Ruthenium complexes five-coordinate

© 2024 chempedia.info