Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Coordination polymerization for

Figure 5.9 outlines the steps for the chain polyaddition mechanism involved in the coordination polymerizations for any kind of active species initiated through different cocatalysts. The counteranion species was suppressed for practical representation of the active site. Once the cationic species is created, it starts the growth of the polymeric chain through continuous addition of monomer. The propagation step is forward described in Figure 5.9 according to the most accepted reaction cycle proposed by Cossee and Arlman, which is known as the Cossee-Arlman mechanism [51]. [Pg.93]

In their polymerization, many individual alkene molecules combine to give a high molecular weight product Among the methods for alkene polymerization cationic polymerization coordination polymerization and free radical polymerization are the most important An example of cationic polymerization is... [Pg.274]

At present it is not possible to determine which of these mechanisms or their variations most accurately represents the behavior of Ziegler-Natta catalysts. In view of the number of variables in these catalyzed polymerizations, both mechanisms may be valid, each for different specific systems. In the following example the termination step of coordination polymerizations is considered. [Pg.493]

In Section 6.21 we listed three main methods for polymerizing alkenes cationic, free-radical, and coordination polymerization. In Section 7.15 we extended our knowledge of polymers to their stereochemical aspects by noting that although free-radical polymerization of propene gives atactic polypropylene, coordination polymerization produces a stereoregulai polymer with superior physical properties. Because the catalysts responsible for coordination polymerization ar e organometallic compounds, we aie now in a position to examine coordination polymerization in more detail, especially with respect to how the catalyst works. [Pg.610]

Before coordination polymerization was discovered by Ziegler and applied to propene by Natta, there was no polypropylene industry. Now, more than 10 ° pounds of it aie prepared each year in the United States. Ziegler and Natta shared the 1963 Nobel Prize in chemistry Ziegler for discovering novel catalytic systems for alkene polymerization and Natta for stereoregular- polymerization. [Pg.614]

Many complexes have more than one coordination mode of BH4 featured in their structure, e.g. [U ()9 -BH4)()9 -BH4)2(dmpe)2]. Likewise, whereas [M(BH4)4] are monomeric 12-coordinate complexes for M = Zr, Hf, Np, Pu, they are polymeric for M = Th, Pa, U the coordination number rises to 14 and each metal centre is coordinated by two r) -BH4 and four bridging r) -BH4 groups. It is clear that among the factors which determine the mode adopted are the size of the metal atom and the steric requirements of the co-ligands. Many of the complexes... [Pg.156]

The distinction between coordination polymerization and ionic polymerization is not sharp. Let us consider for example a C—X bond, X being a halogen or a metal. Winstein54 and Evans14 have demonstrated that in a compound containing this type of bond an equilibrium may be established in a suitable solvent between... [Pg.162]

All of these examples explain why such a variety of phenomena are observed in ionic or coordination polymerization. What we need to understand is the cause which gives to a particular center this or other properties, e.g., why dissociation into isolated ions leads to one and not another change in the reactivity and the specificity, how changes in solvation shell change the behavior of the growing center. This whole field is still uncharted, and calls for a thorough academic research. [Pg.170]

Configurational energy for clathrates, 12 Configurations, superposition of, 258 Conformal solution theory, 137 Coordination polymerization, 148, 162, 170... [Pg.404]

The presence of long chain branches in low density polyethylene (LDPE) accounts for the difference in properties e.g. higher melt strength, greater toughness for the same average molecular weight) between LDPE and linear low density polyethylene (LLDPE, made by coordination polymerization). [Pg.321]

Moreover, the molecular catalysts have provided systematic opportunities to study the mechanisms of the initiation, propagation, and termination steps of coordination polymerization and the mechanisms of stereospecific polymerization. This has significantly contributed to advances in the rational design of catalysts for the controlled (co)polymerization of olefinic monomers. Altogether, the development of high performance molecular catalysts has made a dramatic impact on polymer synthesis and catalysis chemistry. There is thus great interest in the development of new molecular catalysts for olefin polymerization with a view to achieving unique catalysis and distinctive polymer synthesis. [Pg.5]

Radical polymerization is the most useful method for a large-scale preparation of various kinds of vinyl polymers. More than 70 % of vinyl polymers (i. e. more than 50 % of all plastics) are produced by the radical polymerization process industrially, because this method has a large number of advantages arising from the characteristics of intermediate free-radicals for vinyl polymer synthesis beyond ionic and coordination polymerizations, e.g., high polymerization and copolymerization reactivities of many varieties of vinyl monomers, especially of the monomers with polar and unprotected functional groups, a simple procedure for polymerizations, excellent reproducibility of the polymerization reaction due to tolerance to impurities, facile prediction of the polymerization reactions from the accumulated data of the elementary reaction mechanisms and of the monomer structure-reactivity relationships, utilization of water as a reaction medium, and so on. [Pg.75]

Distorted cis dimethyl octahedral geometry. 184 Compound 56 is polymeric, with coordination 7 for the Sn atom. [Pg.400]

Triphenylaluminum is useful as a component of catalyst systems for ionic or coordination polymerization of vinyl compounds. This preparation of the material in solid form enables the purity of the compound to be easily determined. The availability of solid triphenylaluminum permits the user a choice of solvents for a reaction, and a variety of concentrations of the reagent. Storage and dispensation of the reagent are more convenient in the solid form. [Pg.56]

The annual production of various polymers can be measured only in billion tons of which polyolefins alone figure around 100 million tons per year. In addition to radical and ionic polymerization, a large part of this huge amount is manufactured by coordination polymerization technology. The most important Ziegler-Natta, chromium- and metallocene-based catalysts, however, contain early transition metals which are too oxophiUc to be used in aqueous media. Nevertheless, with the late transition metals there is some room for coordination polymerization in aqueous systems [1,2] and the number of studies published on this topic is steadily growing. [Pg.192]


See other pages where Coordination polymerization for is mentioned: [Pg.179]    [Pg.1065]    [Pg.511]    [Pg.14]    [Pg.179]    [Pg.1065]    [Pg.511]    [Pg.14]    [Pg.271]    [Pg.610]    [Pg.489]    [Pg.128]    [Pg.271]    [Pg.309]    [Pg.170]    [Pg.122]    [Pg.153]    [Pg.31]    [Pg.1279]    [Pg.48]    [Pg.225]    [Pg.23]    [Pg.60]    [Pg.18]    [Pg.23]    [Pg.360]    [Pg.193]    [Pg.208]    [Pg.115]    [Pg.336]    [Pg.344]    [Pg.145]    [Pg.27]    [Pg.397]    [Pg.169]    [Pg.119]    [Pg.122]   


SEARCH



Coordination polymerization

Polymerization coordinated

© 2024 chempedia.info