Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Continuous time random walk, anomalous

Here, we present an approach for the description of such anomalous transport processes that is based on the continuous-time random walk theory for a power-law waiting time distribution w(t) but which can be used to find the probability density function of the random walker in the presence of an external force field, or in phase space. This framework is fractional dynamics, and we show how the traditional kinetic equations can be generalized and solved within this approach. [Pg.227]

How general are our results From a stochastic point of view ergodicity breaking, Levy statistics, anomalous diffusion, aging, and fractional calculus, are all related. In particular ergodicity breaking is found in other models with power-law distributions, related to the underlying stochastic model (the Levy walk). For example, the well known continuous time random walk model also... [Pg.353]

Chapter 8 by W. T. Coffey, Y. P. Kalmykov, and S. V. Titov, entitled Fractional Rotational Diffusion and Anomalous Dielectric Relaxation in Dipole Systems, provides an introduction to the theory of fractional rotational Brownian motion and microscopic models for dielectric relaxation in disordered systems. The authors indicate how anomalous relaxation has its origins in anomalous diffusion and that a physical explanation of anomalous diffusion may be given via the continuous time random walk model. It is demonstrated how this model may be used to justify the fractional diffusion equation. In particular, the Debye theory of dielectric relaxation of an assembly of polar molecules is reformulated using a fractional noninertial Fokker-Planck equation for the purpose of extending that theory to explain anomalous dielectric relaxation. Thus, the authors show how the Debye rotational diffusion model of dielectric relaxation of polar molecules (which may be described in microscopic fashion as the diffusion limit of a discrete time random walk on the surface of the unit sphere) may be extended via the continuous-time random walk to yield the empirical Cole-Cole, Cole-Davidson, and Havriliak-Negami equations of anomalous dielectric relaxation from a microscopic model based on a... [Pg.586]

Another most important question in anomalous dielectric relaxation is the physical interpretation of the parameters a and v in the various relaxation formulas and what are the physical conditions that give rise to these parameters. Here we shall give a reasonably convincing derivation of the fractional Smoluckowski equation from the discrete orientation model of dielectric relaxation. In the continuum limit of the orientation sites, such an approach provides a justification for the fractional diffusion equation used in the explanation of the Cole-Cole equation. Moreover, the fundamental solution of that equation for the free rotator will, by appealing to self-similarity, provide some justification for the neglect of spatial derivatives of higher order than the second in the Kramers-Moyal expansion. In order to accomplish this, it is first necessary to explain the concept of the continuous-time random walk (CTRW). [Pg.294]

Recently, besides the classical way of describing anomalous diffusion via continuous time random walks (CTRW) and L vy-walk models [79-83,86-92], descriptions based on fractional derivatives have also attracted much interest [8,9,93-95], As a reminder, one has as the defining relation for fractional derivation the Riemann-Iiouville expression ... [Pg.215]


See other pages where Continuous time random walk, anomalous is mentioned: [Pg.525]    [Pg.226]    [Pg.358]    [Pg.584]    [Pg.257]    [Pg.419]    [Pg.742]    [Pg.175]    [Pg.44]    [Pg.305]   


SEARCH



Continuous time

Continuous time random walk

Random walk

Randomization time

Walk

Walking

© 2024 chempedia.info