Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Contents Break-Even Analysis

Reaction of K3Co(CN) with PMMA. A 1.0 g sample of PMMA and 1.0g of the cobalt compound were combined in a standard vessel and pyrolyzed for 2 hrs at 375°C. The tube was removed from the oven and the contents of the tube were observed to be solid (PMMA is liquid at this temperature). The tube was reattached to the vacuum line via the break-seal and opened. Gases were determined by pressure-volume-temperature measurements on the vacuum line and identified by infrared spectroscopy. Recovered were 0.22g of methyl methacrylate and 0.11 g of CO and C02. The tube was then removed from the vacuum line and acetone was added. Filtration gave two fractions, 1.27g of acetone insoluble material and 0.30g of acetone soluble (some soluble material is always lost in the recovery process). The acetone insoluble fraction was then slurried with water, 0.11 g of material was insoluble in water. Infrared analysis of this insoluble material show both C-H and C-0 vibrations and are classified as char based upon infrared spectroscopy. Reactions were also performed at lower temperature, even at 260°C some char is evident in the insoluble fraction. [Pg.180]

Strong interactions between the polar matrix and polar analytes may lead to extremely long equilibrium times and errors in quantitation even when the MHS technique is used. In these cases, a displacer may be added to break the interactions between the matrix and analyte. Polar 2-cyclopentyl-cyclopentanone could be quantitatively determined in polar polyamide 6.6 by MHS-SPME if water was added as a displacer to break the hydrogen bonding between 2-cyclopentyl-cyclopentanone and polyamide. The addition of water also significantly reduced the equilibrium time. A correlation was found between the amount of 2-cyclopentyl-cyclopentanone emitted from polyamide 6.6 and the total amount of 2-cyclopentyl-cyclopentanone in the material. This correlation enables rapid assessment of the 2-cyclopentyl-cy-clopentanone content using headspace techniques under non-equilibrium conditions. The analysis time is significantly reduced if the polymer samples are milled to a powder prior to extraction. [Pg.81]


See other pages where Contents Break-Even Analysis is mentioned: [Pg.555]    [Pg.133]    [Pg.174]    [Pg.143]    [Pg.241]    [Pg.457]    [Pg.168]    [Pg.150]    [Pg.391]    [Pg.1127]    [Pg.201]    [Pg.2544]   


SEARCH



Break-even analysis

Content analysis

© 2024 chempedia.info