Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Constant vibronic

For molecules we can use Bom-Oppenlieimer wavefimctions and talk about emission from one vibronic level to another. Equation (B1.1.5T equation tb 1.1.6) and equation tb 1.1.7) can be used just as they were for absorption. If we have an emission from vibronic state iih to the lower state a, the rate constant for emission would be given by... [Pg.1131]

In rare gas crystals [77] and liquids [78], diatomic molecule vibrational and vibronic relaxation have been studied. In crystals, VER occurs by multiphonon emission. Everything else held constant, the VER rate should decrease exponentially with the number of emitted phonons (exponential gap law) [79, 80] The number of emitted phonons scales as, and should be close to, the ratio O/mQ, where is the Debye frequency. A possible complication is the perturbation of the local phonon density of states by the diatomic molecule guest [77]. [Pg.3040]

Kr. In the B-emitting states, a slower stepwise relaxation was observed. Figure C3.5.5 shows the possible modes of relaxation for B-emitting XeF and some experimentally detennined time constants. Although a diatomic in an atomic lattice seems to be a simple system, these vibronic relaxation experiments are rather complicated to interiDret, because of multiple electronic states which are involved due to energy transfer between B and C sites. [Pg.3040]

Figure C3.5.5. Vibronic relaxation time constants for B- and C-state emitting sites of XeF in solid Ar for different vibrational quantum numbers v, from [25]. Vibronic energy relaxation is complicated by electronic crossings caused by energy transfer between sites. Figure C3.5.5. Vibronic relaxation time constants for B- and C-state emitting sites of XeF in solid Ar for different vibrational quantum numbers v, from [25]. Vibronic energy relaxation is complicated by electronic crossings caused by energy transfer between sites.
If the solution of the zero-order Schiodinger equation [i.e., all teiins in (17) except V(r,Ro) are neglected] yields an/-fold degenerate electronic term, the degeneracy may be removed by the vibronic coupling tenns. If F) and T ) are the two degenerate wave functions, then the vibronic coupling constant... [Pg.356]

Figure 3. Low-energy vibronic spectrum in a. 11 electronic state of a linear triatomic molecule, computed for various values of the Renner parameter e and spin-orbit constant Aso (in cm ). The spectrum shown in the center of figure (e = —0.17, A o = —37cm ) corresponds to the A TT state of NCN [28,29]. The zero on the energy scale represents the minimum of the potential energy surface. Solid lines A = 0 vibronic levels dashed lines K = levels dash-dotted lines K = 1 levels dotted lines = 3 levels. Spin-vibronic levels are denoted by the value of the corresponding quantum number P P = Af - - E note that E is in this case spin quantum number),... Figure 3. Low-energy vibronic spectrum in a. 11 electronic state of a linear triatomic molecule, computed for various values of the Renner parameter e and spin-orbit constant Aso (in cm ). The spectrum shown in the center of figure (e = —0.17, A o = —37cm ) corresponds to the A TT state of NCN [28,29]. The zero on the energy scale represents the minimum of the potential energy surface. Solid lines A = 0 vibronic levels dashed lines K = levels dash-dotted lines K = 1 levels dotted lines = 3 levels. Spin-vibronic levels are denoted by the value of the corresponding quantum number P P = Af - - E note that E is in this case spin quantum number),...
Figure 5, Low-eriergy vibronic spectrum in a electronic state of a linear triatomic molecule. The parameter c determines the magnitude of splitting of adiabatic bending potential curves, is the spin-orbit coupling constant, which is assumed to be positive. The zero on the... Figure 5, Low-eriergy vibronic spectrum in a electronic state of a linear triatomic molecule. The parameter c determines the magnitude of splitting of adiabatic bending potential curves, is the spin-orbit coupling constant, which is assumed to be positive. The zero on the...
The quantity J dr is called the vibrational overlap integral, as it is a measure of the degree to which the two vibrational wave functions overlap. Its square is known as the Franck-Condon factor to which the intensity of the vibronic transition is proportional. In carrying out the integration the requirement that r remain constant during the transition is necessarily taken into account. [Pg.248]

The illustration of various types of vibronic transitions in Figure 7.18 suggests that we can use the method of combination differences to obtain the separations of vibrational levels from observed transition wavenumbers. This method was introduced in Section 6.1.4.1 and was applied to obtaining rotational constants for two combining vibrational states. The method works on the simple principle that, if two transitions have an upper level in common, their wavenumber difference is a function of lower state parameters only, and vice versa if they have a lower level in common. [Pg.250]

The first type of interaction, associated with the overlap of wavefunctions localized at different centers in the initial and final states, determines the electron-transfer rate constant. The other two are crucial for vibronic relaxation of excited electronic states. The rate constant in the first order of the perturbation theory in the unaccounted interaction is described by the statistically averaged Fermi golden-rule formula... [Pg.26]

The microscopic rate constant is derived from the quantum mechanical transition probability by considering the system to be initially present in one of the vibronic levels on the initial potential surface. The initial level is coupled by spin-orbit interaction to the manifold of vibronic levels belonging to the final potential surface. The microscopic rate constant is then obtained, following the Fermi-Golden rule, as ... [Pg.94]

Assuming that the spin conversion is a nonadiabatic process, the macroscopic rate constant may be expressed, following Levich [125], in terms of the thermally averaged transition probability, the averaging being extended over the initial vibronic levels, as ... [Pg.95]

In conventional theories of rate processes, the temperature T is usually involved. The involvement of T implicitly assumes that vibrational relaxation is much faster than the process under consideration so that vibrational equilibrium is established before the system undergoes the rate process. For example, let us consider the photoinduced ET (see Fig. 5). From Fig. 5 we can see that for the case in which vibrational relaxation is much faster than the ET, vibrational equilibrium is established before the rate process takes place in this case the ET rate is independent of the excitation wavelength and a thermal average ET constant can be used. On the other hand, for the case in which the ET is much faster than vibrational relaxation, the ET takes place from the pumped vibronic level (or levels) and thus the ET rate depends on the excitation wavelength and often quantum beat will be observed. [Pg.6]

From the above discussion, we can see that the purpose of this paper is to present a microscopic model that can analyze the absorption spectra, describe internal conversion, photoinduced ET, and energy transfer in the ps and sub-ps range, and construct the fs time-resolved profiles or spectra, as well as other fs time-resolved experiments. We shall show that in the sub-ps range, the system is best described by the Hamiltonian with various electronic interactions, because when the timescale is ultrashort, all the rate constants lose their meaning. Needless to say, the microscopic approach presented in this paper can be used for other ultrafast phenomena of complicated systems. In particular, we will show how one can prepare a vibronic model based on the adiabatic approximation and show how the spectroscopic properties are mapped onto the resulting model Hamiltonian. We will also show how the resulting model Hamiltonian can be used, with time-resolved spectroscopic data, to obtain internal... [Pg.7]

For the case in which the electronic transition is much faster than vibrational relaxation, one has to use the single-vibronic level rate constant and in analyzing the transient absorption or stimulated emission spectra, the single-vibronic level absorption or stimulated emission coefficient should be used. For... [Pg.67]


See other pages where Constant vibronic is mentioned: [Pg.89]    [Pg.114]    [Pg.97]    [Pg.89]    [Pg.114]    [Pg.97]    [Pg.1960]    [Pg.492]    [Pg.501]    [Pg.510]    [Pg.512]    [Pg.523]    [Pg.530]    [Pg.530]    [Pg.533]    [Pg.112]    [Pg.161]    [Pg.54]    [Pg.173]    [Pg.21]    [Pg.25]    [Pg.443]    [Pg.341]    [Pg.353]    [Pg.2]    [Pg.143]    [Pg.144]    [Pg.111]    [Pg.121]    [Pg.126]    [Pg.499]    [Pg.393]    [Pg.592]    [Pg.600]   
See also in sourсe #XX -- [ Pg.800 ]




SEARCH



Vibron

Vibronics

Vibrons

© 2024 chempedia.info