Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Conjugation thiol-maleimide

Figure 1.88 The maleimide group of BMPA reacts with a thiol-containing molecule to result in a modification having a terminal carboxylate group. Amine-containing molecules then can be conjugated to the carboxylate using a carbodiimide reaction with EDC. Figure 1.88 The maleimide group of BMPA reacts with a thiol-containing molecule to result in a modification having a terminal carboxylate group. Amine-containing molecules then can be conjugated to the carboxylate using a carbodiimide reaction with EDC.
A common choice of crosslinker for this type of reaction is sulfo-SMCC, which has been used extensively for antibody conjugation (Chapter 20, Section 1.1). A better option for dendrimer conjugation is to use a similar crosslinker design, but one that contains a hydrophilic PEG spacer arm to promote dendrimer hydrophilicity after modification. Derivatization of an amine-dendrimer with a NHS-PEG-maleimide can create an intermediate that is coated with water-soluble PEG spacers. This modification helps to mask any potential for nonspecific interactions that the PAMAM surface may have, while providing terminal thiol-reactive maleimides for coupling ligands (Figure 7.10). [Pg.359]

Figure 7.10 An NHS-PEG-maleimide compound can be used to functionalize dendrimers to provide a hydrophilic spacer terminating in thiol-reactive groups. Thiol-containing proteins then can be conjugated to this reactive intermediate to form covalent thioether bonds. Figure 7.10 An NHS-PEG-maleimide compound can be used to functionalize dendrimers to provide a hydrophilic spacer terminating in thiol-reactive groups. Thiol-containing proteins then can be conjugated to this reactive intermediate to form covalent thioether bonds.
Coupling of affinity molecules to surfaces also can be enhanced by the use of discrete PEG linkers. Nishimura et al. (2005) modified an amino surface with a NHS-PEG -maleimide crosslinker to create a hydrophilic self-assembled monolayer (SAM) surface that was thiol reactive for the conjugation of sulfhydryl-modified RNAs. This array then was used to investigate the binding specificity of synthetic kanamycins with selected RNA sequences to prove the specific interaction of ribosomal RNA with this molecule. The PEG linkers on surfaces provide lower nonspecific binding character than alkyl linkers, when preparing SAM surfaces for affinity interactions. [Pg.709]

Figure 18.9 NHS-PEG4-maleimide conjugation reactions are carried out in two steps involving modification of an amine-containing molecule with the NHS ester end with subsequent coupling of the maleimide end with a thiol-containing molecule. Figure 18.9 NHS-PEG4-maleimide conjugation reactions are carried out in two steps involving modification of an amine-containing molecule with the NHS ester end with subsequent coupling of the maleimide end with a thiol-containing molecule.
Add the thiol-protein to the maleimide-PEG-protein in the desired molar ratio to initiate the conjugation reaction. [Pg.722]

Figure 19.16 A common way of conjugating sulfhydryl-containing haptens to carrier proteins is to activate the carrier with sulfo-SMCC to create an intermediate maleimide derivative. The maleimide groups then can be coupled to thiols to form thioether bonds. Figure 19.16 A common way of conjugating sulfhydryl-containing haptens to carrier proteins is to activate the carrier with sulfo-SMCC to create an intermediate maleimide derivative. The maleimide groups then can be coupled to thiols to form thioether bonds.
Figure 20.4 Reduction of the disulfide bonds within the hinge region of an IgG molecule produces half-anti-body molecules containing thiol groups. Reaction of these reduced antibodies with a maleimide-activated enzyme creates a conjugate through thioether bond formation. Figure 20.4 Reduction of the disulfide bonds within the hinge region of an IgG molecule produces half-anti-body molecules containing thiol groups. Reaction of these reduced antibodies with a maleimide-activated enzyme creates a conjugate through thioether bond formation.
A final consideration is to provide adequate desalting of the reduced antibody molecule from excess reducing agent. If even a small amount of a thiol-containing reductant remains, subsequent conjugation with a maleimide-activated enzyme will be inhibited. [Pg.792]

Figure 20.5 Antibodies may be modified with 2-iminothiolane at their amine groups to create sulfhydryls for conjugation with SMCC-activated enzymes. The maleimide groups on the derivatized enzyme react with the thiols on the antibody to form thioether bonds. Figure 20.5 Antibodies may be modified with 2-iminothiolane at their amine groups to create sulfhydryls for conjugation with SMCC-activated enzymes. The maleimide groups on the derivatized enzyme react with the thiols on the antibody to form thioether bonds.
Figure 20.13 The thiolation reagent SATA can be used to create sulfhydryl groups on Fab fragments. After deprotection of the acetylated thiol of SATA with hydroxylamine, conjugation with a maleimide-activated enzyme can take place, producing thioether linkages. Figure 20.13 The thiolation reagent SATA can be used to create sulfhydryl groups on Fab fragments. After deprotection of the acetylated thiol of SATA with hydroxylamine, conjugation with a maleimide-activated enzyme can take place, producing thioether linkages.
Figure 22.12 The reaction of SPDP with PE creates a maleimide derivative capable of coupling thiols. Reaction with a sulfhydryl-containing molecule forms a conjugate through a thioether linkage. Figure 22.12 The reaction of SPDP with PE creates a maleimide derivative capable of coupling thiols. Reaction with a sulfhydryl-containing molecule forms a conjugate through a thioether linkage.
Reduction of the cystamine-labeled oligo using a disulfide reducing agent releases 2-mer-captoethylamine and creates a thiol group for conjugation (Figure 27.6). DNA probes labeled in this manner have been successfully coupled with SPDP-activated alkaline phosphatase (Chapter 26, Sections 1.2 and 2.5), maleimide-activated horseradish peroxidase (HRP) (Chapter 26, Section 1.1), NHS-LC-biotin (Chapter 11, Section 1 and Chapter 27, Section 2.3), and the fluorescent tag AMCA-HPDP (Chapter 9, Section 3 and Chapter 27, Section 2.5). [Pg.981]

Ghosh, S.S., Kao, P.M., McCue, A.W., and Chappelle, H.L. (1990) Use of maleimide-thiol coupling chemistry for efficient syntheses of oligonucleotide-enzyme conjugate hybridization probes. Bioconjugate Chem. 1, 71-76. [Pg.1066]


See other pages where Conjugation thiol-maleimide is mentioned: [Pg.188]    [Pg.790]    [Pg.262]    [Pg.622]    [Pg.2172]    [Pg.2173]    [Pg.28]    [Pg.130]    [Pg.119]    [Pg.273]    [Pg.879]    [Pg.85]    [Pg.395]    [Pg.200]    [Pg.358]    [Pg.363]    [Pg.470]    [Pg.479]    [Pg.496]    [Pg.604]    [Pg.645]    [Pg.717]    [Pg.718]    [Pg.720]    [Pg.720]    [Pg.722]    [Pg.727]    [Pg.740]    [Pg.766]    [Pg.960]    [Pg.426]    [Pg.117]    [Pg.113]    [Pg.115]   
See also in sourсe #XX -- [ Pg.262 ]




SEARCH



Maleimide conjugation

Maleimides

Thiol conjugation

Thiol-maleimide conjugation, protein

© 2024 chempedia.info