Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Conformation spectroscopy

Buchanan EG, James WH III, Gutberlet A, Dean JC, Guo L, Gellman SH, Zwier TS (2011) Single-conformation spectroscopy and population analysis of model gamma-peptides new tests of amide stacking. Faraday Discuss 150 209-226... [Pg.37]

Eggeling C, Fries J R, Brand L, Gunther R and Seidel CAM 1998 Monitoring conformational dynamics of a single molecule by selective fluorescence spectroscopy Proc. Natl Acad. Sc/. USA 95 1556-61... [Pg.2511]

Ha T, Ting A Y, Liang J, Caldwell W B, Deniz A A, Chemla D S, Schultz P G and Weiss S 1999 Single-molecule fluorescence spectroscopy of enzyme conformational dynamics and cleavage mechanism Proc. Natl Acad. Sc/. USA 96 893-8... [Pg.2511]

With all-atom simulations the locations of the hydrogen atoms are known and so the order parameters can be calculated directly. Another structural property of interest is the ratio of trans conformations to gauche conformations for the CH2—CH2 bonds in the hydrocarbon tail. The trans gauche ratio can be estimated using a variety of experimental techniques such as Raman, infrared and NMR spectroscopy. [Pg.413]

The physical, chemical cind biological properties of a molecule often depend critically upo the three-dimensional structures, or conformations, that it can adopt. Conformational analysi is the study of the conformations of a molecule and their influence on its properties. Th development of modem conformational analysis is often attributed to D H R Bcirton, wh showed in 1950 that the reactivity of substituted cyclohexanes wcis influenced by th equatoricil or axial nature of the substituents [Beirton 1950]. An equcilly important reaso for the development of conformatiorml analysis at that time Wcis the introduction c analytic il techniques such as infreired spectroscopy, NMR and X-ray crystaillograph] which actucilly enabled the conformation to be determined. [Pg.473]

Quantum chemistry methods allow the prediction of the ultraviolet transitions in good agreement with the experimental values in the case of thiazole and its three methyl derivatives (Table 1-18). A very weak absorption has been indicated at 269.5 nm that could correspond to an n- TT transition given by calculation at 281.5 nm (133). Ultraviolet absorption spectroscopy has been investigated in connection with steric interactions in the A-4-thiazoline-2-thione (74) series (181). It was earlier demonstrated by NMR technique that 4-alkyl-3 isopropyl-A-4-thiazoline-2-thiones exist in solution as equilibrium mixtures of two conformers (75 and 76), the relative populations of which vary with the size of R4 (182) for R4 = rBu the population of rotamer A is 100%, whereas for R4 = Me it is only 28%. Starting from the observed absorption wavelength for... [Pg.49]

One property of NMR spectroscopy is that it is too slow a technique to see the mdi vidual conformations of cyclohexane What NMR sees is the average environment of the protons Because chair-chair mterconversion m cyclohexane converts each axial pro ton to an equatorial one and vice versa the average environments of all the protons are the same A single peak is observed that has a chemical shift midway between the true chemical shifts of the axial and the equatorial protons... [Pg.545]

IR spectroscopy is an inherently faster method than NMR and an IR spectrum is a superposition of the spectra of the various conformations rather than an average of them When 1 2 dichloroethane is cooled below its freezing point the crystalline matenal gives an IR spectrum consistent with a single species that has a center of symmetry At room temperature the IR spec trum of liquid 1 2 dichloroethane retains the peaks present in the solid but includes new peaks as well Explain these observations... [Pg.586]

The melting points, optical rotations, and uv spectral data for selected prostanoids are provided in Table 1. Additional physical properties for the primary PGs have been summarized in the Hterature and the physical methods have been reviewed (47). The molecular conformations of PGE2 and PGA have been determined in the soHd state by x-ray diffraction, and special H and nuclear magnetic resonance (nmr) spectral studies of several PGs have been reported (11,48—53). Mass spectral data have also been compiled (54) (see Mass spectrometry Spectroscopy). [Pg.153]

Specific optical rotation values, [a], for starch pastes range from 180 to 220° (5), but for pure amylose and amylopectin fractions [a] is 200°. The stmcture of amylose has been estabUshed by use of x-ray diffraction and infrared spectroscopy (23). The latter analysis shows that the proposed stmcture (23) is consistent with the proposed ground-state conformation of the monomer D-glucopyranosyl units. Intramolecular bonding in amylose has also been investigated with nuclear magnetic resonance (nmr) spectroscopy (24). [Pg.341]

Application of NMR spectroscopy to heterocyclic chemistry has developed very rapidly during the past 15 years, and the technique is now used almost as routinely as H NMR spectroscopy. There are four main areas of application of interest to the heterocyclic chemist (i) elucidation of structure, where the method can be particularly valuable for complex natural products such as alkaloids and carbohydrate antibiotics (ii) stereochemical studies, especially conformational analysis of saturated heterocyclic systems (iii) the correlation of various theoretical aspects of structure and electronic distribution with chemical shifts, coupling constants and other NMR derived parameters and (iv) the unravelling of biosynthetic pathways to natural products, where, in contrast to related studies with " C-labelled precursors, stepwise degradation of the secondary metabolite is usually unnecessary. [Pg.11]

PE spectroscopy has also been applied to the study of the conformational equilibria of saturated heterocyclic six-membered rings, and in particular of hexahydropyridazines. The... [Pg.20]

Dioxolane also pseudorotates essentially freely in the vapor phase. 2,2 -Bi-l,3-dioxolane (128) has been shown by X-ray crystallography to have a conformation midway between the half-chair and envelope forms. The related compound 2-oxo-l 3-dioxolane (129) shows a half-chair conformation. This result is confirmed by microwave spectroscopy and by NMR data. Analysis of the AA BB NMR spectra of the ring hydrogen atoms in some 1,3-dioxolane lerivatives is in agreement with a puckered ring. Some 2-alkoxy-l,3-dioxolanes (130) display anti and gauche forms about the exocyclic C(2)—O bond. [Pg.35]

The isoxazolidine ring exists primarily as an envelope (77AHQ2l)207) and the nitrogen lone pair can occupy an axial or equatorial position. Photoelectronic spectroscopy is a useful tool to determine conformational analysis of molecules possessing vicinal electron lone-pairs. Rademiacher and Frickmann (78TL841) studied isoxazolidine and 2-methyl- and 2-t-butyl-isoxazolidine and found mixtures of equatorial and axial (e/a) compounds. The ratios of H, Me and Bu in the efa position were 1 3, 4 1 and 10 1, respectively. [Pg.10]

Cyclopent-2-en-l-one, 2-hydroxy-3-methyl-synthesis, 3, 693 Cyclopentenone, 4-methoxy-formation, 1, 423 Cyclopenthiazide as diuretic, 1, 174 Cyclopent[2,3-d]isoxazol-4-one structure, 6, 975 Cyclophane conformation, 2, 115 photoelectron spectroscopy, 2, 140 [2,2]Cyclophane conformation, 2, 115 Cyclophanes nomenclature, 1, 27 Cyclophosphamide as pharmaceutical, 1, 157 reviews, 1, 496 Cyclopiloselloidin synthesis, 3, 743 Cyclopolymerization heterocycle-forming, 1, 292-293 6H-Cyclopropa[5a,6a]pyrazolo[l,5-a]pyrimidine pyrazoles from, 5, 285 Cydopropabenzopyran synthesis, 3, 700 Cyclopropachromenes synthesis, 3, 671 Cyclopropa[c]dnnolines synthesis, 7, 597 Cyclopropanation by carbenes... [Pg.591]

IsoxazoIidine-3,3-dicarboxylic acid, 2-methoxy-dimethyl ester reaction with bases, 6, 47 Isoxazolidine-3,5-diones synthesis, 6, 112, 113 Isoxazoli dines conformation, 6, 10 3,5-disubstituted synthesis, 6, 109 oxidation, 6, 45-46 PE spectra, 6, 5 photolysis, 6, 46 pyrolysis, 6, 46 reactions, 6, 45-47 with acetone, 6, 47 with bases, 6, 47 reduction, 6, 45 ring fission, S, 80 spectroscopy, 6, 6 synthesis, 6, 3, 108-112 thermochemistry, 6, 10 Isoxazolidin-3-ol synthesis, 6, 111 Isoxazolidin-5-oI synthesis, 6, 111... [Pg.690]


See other pages where Conformation spectroscopy is mentioned: [Pg.2969]    [Pg.67]    [Pg.111]    [Pg.490]    [Pg.390]    [Pg.472]    [Pg.157]    [Pg.164]    [Pg.188]    [Pg.219]    [Pg.219]    [Pg.124]    [Pg.280]    [Pg.396]    [Pg.77]    [Pg.8]    [Pg.21]    [Pg.32]    [Pg.33]    [Pg.50]    [Pg.574]    [Pg.600]    [Pg.606]    [Pg.630]    [Pg.631]    [Pg.644]    [Pg.742]    [Pg.742]    [Pg.784]    [Pg.790]    [Pg.792]    [Pg.797]    [Pg.817]    [Pg.817]   
See also in sourсe #XX -- [ Pg.545 ]

See also in sourсe #XX -- [ Pg.545 ]

See also in sourсe #XX -- [ Pg.545 ]

See also in sourсe #XX -- [ Pg.34 , Pg.56 , Pg.57 , Pg.58 , Pg.59 , Pg.60 ]

See also in sourсe #XX -- [ Pg.56 , Pg.57 , Pg.58 , Pg.59 , Pg.60 ]

See also in sourсe #XX -- [ Pg.510 ]

See also in sourсe #XX -- [ Pg.564 ]

See also in sourсe #XX -- [ Pg.535 ]




SEARCH



Conformation-selective IR spectroscopy

Conformational Analysis of Drugs by Nuclear Magnetic Resonance Spectroscopy

Conformational transitions gauche-trans, spectroscopy

Fluorescence correlation spectroscopy conformational changes

Fluorescence correlation spectroscopy protein conformational studies

Fourier-transform infrared spectroscopy conformation

Helical conformation circular dichroism spectroscopy

Infrared spectroscopy chain conformation

Molecular chain conformations spectroscopy

NMR Spectroscopy and Conformational Features

NMR spectroscopy in conformational analysis

Nuclear magnetic resonance spectroscopy and conformations

Raman spectroscopy conformation

Raman spectroscopy conformational analysis

Spectroscopy and Conformational Features

Spectroscopy and Conformational Features of Carbohydrates

Spectroscopy conformational analysis

Spectroscopy excited-state conformation

Spectroscopy in conformational analysis

Spectroscopy protein conformation

Ultraviolet spectroscopy conformation effects

Vibrational spectroscopy and conformational

Vibrational spectroscopy and conformational analysis of oligonucleotides

Vibrational spectroscopy conformation

© 2024 chempedia.info