Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Configuration interactions state functions

Use Configuration Interaction to predict the electronic spectra of molecules. The Configuration Interaction wave function computes a ground state plus low lying excited states. You can obtain electronic absorption frequencies from the differences between the energies of the ground state and the excited states. [Pg.117]

K. Thompson, T.J. Martinez, Ab initio interpolated quantum dynamics on coupled electronic states with fuU configuration interaction wave functions, /. Chem. Phys. 110 (3) (1999) 1376-1382. [Pg.131]

By comparing experimental or accurate theoretical results with others based on approximate models, it is possible to determine which among those models offers the best approximate constants of the motion and quantum numbers to describe particular states. This approach is used to evaluate and compare the extent of validity of independent-particle, Hartree-Fock and collective, molecule-like descriptions of atoms with two valence electrons. The comparisons are made on the basis of overlaps, oscillator strengths, momentum correlation and quadrupole moments. The criterion for each evaluation is the extent of agreement with results obtained from well-converged Sturmian Configuration Interaction wave functions. [Pg.485]

Eq. (8.94) represents an exact expression for the quantum mechanical state of a many-electron system. Note that the expansion coefficients Cj of the N-particle basis states are directly related to the expansion coefficients of the one-particle states. It is sufficient to know either of them (and this fact is related to the observation made below that a full configuration interaction wave function does not require the optimization of orbitals see the next section). [Pg.285]

Li atom to the exact energies obtained with the most accurate configuration interaction wave function using the HyUeraas basis set [49]. The calculations show that the correlation energies (jiffgrent excited states... [Pg.191]

Basis Sets Correlation Consistent Sets Circular Dichro-ism Electronic Complete Active Space Self-consistent Field (CASSCF) Second-order Perturbation Theory (CASPT2) Configuration Interaction Density Functional Applications Density Functional Theory (DFT), Hartree-Fock (HF), and the Self-consistent Field Electronic Diabatic States Definition, Computation, and Applications ESR Hyperfine Calculations Magnetic Circular Dichroism of rt Systems Non-adiabatic Derivative Couplings Relativistic Theory and Applications Structure Determination by Computer-based Spectrum Interpretation Valence Bond Curve Crossing Models. [Pg.2663]

Configuration Interaction (or electron correlation) adds to the single determinant of the Hartree-Fock wave function a linear combination of determinants that play the role of atomic orbitals. This is similar to constructing a molecular orbital as a linear combination of atomic orbitals. Like the LCAO approximation. Cl calculations determine the weighting of each determinant to produce the lowest energy ground state (see SCFTechnique on page 43). [Pg.38]

For some systems a single determinant (SCFcalculation) is insufficient to describe the electronic wave function. For example, square cyclobutadiene and twisted ethylene require at least two configurations to describe their ground states. To allow several configurations to be used, a multi-electron configuration interaction technique has been implemented in HyperChem. [Pg.235]

Green, L. C., Mulder, M. M., Milner, P. C., Lewis, M. N., Woll, J. W., Jr., Kolchin, E. K., and Mace, D., Phys. Rev. 96, 319, (iii) Analysis of the three parameter wave function of Hylleraas for the He I ground state in terms of central field wave-functions/ Configurational interaction. [Pg.339]

Configuration interaction, which is necessary in treatments of excited states and desirable in calculations of spin densities, is more complex with open-shell systems. This is because more types of configurations are formed by one-electron promotions. These configurations (Figure 5) are designated as A, B, Cq, C(3 G is the symbol for a ground state. Configurations C and Cp have the same orbital part but differ in the spin functions. [Pg.338]

Grimme, S., 1996, Density Functional Calculations With Configuration Interaction for the Excited States of Molecules , Chem. Phys. Lett., 259, 128. [Pg.289]


See other pages where Configuration interactions state functions is mentioned: [Pg.339]    [Pg.238]    [Pg.201]    [Pg.410]    [Pg.228]    [Pg.328]    [Pg.232]    [Pg.323]    [Pg.58]    [Pg.747]    [Pg.677]    [Pg.840]    [Pg.253]    [Pg.332]    [Pg.38]    [Pg.131]    [Pg.256]    [Pg.46]    [Pg.234]    [Pg.404]    [Pg.54]    [Pg.361]    [Pg.120]    [Pg.335]    [Pg.207]    [Pg.174]    [Pg.139]    [Pg.57]    [Pg.35]    [Pg.67]    [Pg.68]    [Pg.79]    [Pg.80]    [Pg.165]    [Pg.185]   
See also in sourсe #XX -- [ Pg.107 , Pg.108 ]




SEARCH



Configuration Interaction

Configuration functions

Configuration state functions

Configurational State Functions

Configurational interaction

Functional interactions

Functional state

Functions state function

Interactive function

State functions

© 2024 chempedia.info