Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Conduction band, cell

Fig. 1. The energy levels in a semiconductor. Shown are the valence and conduction bands and the forbidden gap in between where represents an occupied level, ie, electrons are present O, an unoccupied level and -3- an energy level arising from a chemical defect D and occurring within the forbidden gap. The electrons in each band are somewhat independent, (a) A cold semiconductor in pitch darkness where the valence band levels are filled and conduction band levels are empty, (b) The same semiconductor exposed to intense light or some other form of excitation showing the quasi-Fermi level for each band. The energy levels are occupied up to the available voltage for that band. There is a population inversion between conduction and valence bands which can lead to optical gain and possible lasing. Conversely, the chemical potential difference between the quasi-Fermi levels can be connected as the output voltage of a solar cell. Fquilihrium is reestabUshed by stepwise recombination at the defect levels D within the forbidden gap. Fig. 1. The energy levels in a semiconductor. Shown are the valence and conduction bands and the forbidden gap in between where represents an occupied level, ie, electrons are present O, an unoccupied level and -3- an energy level arising from a chemical defect D and occurring within the forbidden gap. The electrons in each band are somewhat independent, (a) A cold semiconductor in pitch darkness where the valence band levels are filled and conduction band levels are empty, (b) The same semiconductor exposed to intense light or some other form of excitation showing the quasi-Fermi level for each band. The energy levels are occupied up to the available voltage for that band. There is a population inversion between conduction and valence bands which can lead to optical gain and possible lasing. Conversely, the chemical potential difference between the quasi-Fermi levels can be connected as the output voltage of a solar cell. Fquilihrium is reestabUshed by stepwise recombination at the defect levels D within the forbidden gap.
Solar cells the difference between conduction and valence band chemical potentials is the available output voltage of a solar cell. Light creates the chemical potential difference simply by boosting a population of electrons from the valence band into the conduction band (see Photovoltaic cells Solar energy). [Pg.116]

Figure 5.20. Left Schematic of an O2 conducting solid electrolyte cell with fixed P02 and PO2 values at the porous working (W) and reference (R ) electrodes without (top) and with (bottom) ion backspillover on the gas exposed electrodes surfaces, showing also the range of spatial constancy of the electrochemical potential, PQ2-, of O2. Right Corresponding spatial variation in the electrochemical potential of electrons, ]Ie(= Ef) UWR is fixed in both cases to the value (RT/4F)ln( P02 /pc>2 ) also shown in the relative position of the valence band, Ev, and of the bottom of the conduction band, Ec, in the solid electrolyte (SE) numerical values correspond to 8 mol% Y203-stabilized-Zr02, pc>2=10 6 bar, po2=l bar and T=673 K.32 Reproduced by permission of The Electrochemical Society. Figure 5.20. Left Schematic of an O2 conducting solid electrolyte cell with fixed P02 and PO2 values at the porous working (W) and reference (R ) electrodes without (top) and with (bottom) ion backspillover on the gas exposed electrodes surfaces, showing also the range of spatial constancy of the electrochemical potential, PQ2-, of O2. Right Corresponding spatial variation in the electrochemical potential of electrons, ]Ie(= Ef) UWR is fixed in both cases to the value (RT/4F)ln( P02 /pc>2 ) also shown in the relative position of the valence band, Ev, and of the bottom of the conduction band, Ec, in the solid electrolyte (SE) numerical values correspond to 8 mol% Y203-stabilized-Zr02, pc>2=10 6 bar, po2=l bar and T=673 K.32 Reproduced by permission of The Electrochemical Society.
Figure 7.9. Schematic representation of the density of states N(E) in the conduction band of two transition metal electrodes (W and R) and of the definitions of work function O, chemical potential of electrons p, electrochemical potential of electrons or Fermi level p, surface potential x, Galvani (or inner) potential (p and Volta (or outer) potential for the catalyst (W) and for the reference electrode (R). The measured potential difference UWr is by definition the difference in p q>, p and p are spatially uniform O and can vary locally on the metal surfaces 21 the T terms are equal, see Fig. 5.18, for the case of fast spillover, in which case they also vanish for an overall neutral cell Reprinted with permission from The Electrochemical Society. Figure 7.9. Schematic representation of the density of states N(E) in the conduction band of two transition metal electrodes (W and R) and of the definitions of work function O, chemical potential of electrons p, electrochemical potential of electrons or Fermi level p, surface potential x, Galvani (or inner) potential (p and Volta (or outer) potential for the catalyst (W) and for the reference electrode (R). The measured potential difference UWr is by definition the difference in p q>, p and p are spatially uniform O and can vary locally on the metal surfaces 21 the T terms are equal, see Fig. 5.18, for the case of fast spillover, in which case they also vanish for an overall neutral cell Reprinted with permission from The Electrochemical Society.
Finally cells containing a p-type semiconductor electrode should be mentioned. In principle the application of p-type electrodes would be even more favorable because electrons created by light excitation are transferred from the conduction band to the redox system. Stability problems are less severe because most semiconductors do not show cathodic decomposition (see e.g. earlier review article. However, there is only one system, p-InP/(V " /V ), with which a reasonable efficiency was obtained (Table 1) . There are mainly two reasons why p-electrodes were not widely used (i) not many materials are available from which p-type electrodes can be made (ii)... [Pg.92]

Molecular engineering of ruthenium complexes that can act as panchromatic CT sensitizers for Ti02-based solar cells presents a challenging task as several requirements have to be fulfilled by the dye, which are very difficult to be met simultaneously. The lowest unoccupied molecular orbitals (LUMOs) and the highest occupied molecular orbitals (HOMOs) have to be maintained at levels where photo-induced electron transfer into the Ti02 conduction band and regeneration... [Pg.727]

Figure 11 Illustration of the interfacial CT processes in a nanocrystalline dye-sensitized solar cell. S / S+/S represent the sensitizer in the ground, oxidized and excited state, respectively. Visible light absorption by the sensitizer (1) leads to an excited state, followed by electron injection (2) onto the conduction band of Ti02. The oxidized sensitizer (3) is reduced by the I-/I3 redox couple (4) The injected electrons into the conduction band may react either with the oxidized redox couple (5) or with an oxidized dye molecule (6). Figure 11 Illustration of the interfacial CT processes in a nanocrystalline dye-sensitized solar cell. S / S+/S represent the sensitizer in the ground, oxidized and excited state, respectively. Visible light absorption by the sensitizer (1) leads to an excited state, followed by electron injection (2) onto the conduction band of Ti02. The oxidized sensitizer (3) is reduced by the I-/I3 redox couple (4) The injected electrons into the conduction band may react either with the oxidized redox couple (5) or with an oxidized dye molecule (6).
In order to obtain high conversion efficiencies, optimization of the short-circuit photocurrent and open-circuit potential of the solar cell are essential. The conduction band of the Ti02 is known to have... [Pg.743]

Apart from recapture of the injected electrons by the oxidized dye, there are additional loss channels in dye-sensitized solar cells, which involve reduction of triiodide ions in the electrolyte, resulting in dark currents. The Ti02 layer is an interconnected network of nanoparticles with a porous structure. The functionalized dyes penetrate through the porous network and adsorb over Ti02 the surface. However, if the pore size is too small for the dye to penetrate, that part of the surface may still be exposed to the redox mediator whose size is smaller than the dye. Under these circumstances, the redox mediator can collect the injected electron from the Ti02 conduction band, resulting in a dark current (Equation (6)), which can be measured from intensity-modulated experiments and the dark current of the photovoltaic cell. Such dark currents reduce the maximum cell voltage obtainable, and thereby the total efficiency. [Pg.747]

Polydiacetylene crystals. The enhancement of x because of one-dimensional electron delocalization is strikingly corroborated in the polydiacetylene crystals. Their structure is that of a super alternated chain with four atoms per unit cell and the Huckel approximation yields four bands for the ir-electrons, two valence and two conduction bands. When depicted in the extended Jones zone, each pair can be viewed as arising by a discontinuity at the middle of the Brillouin zone of the polyene chain. The dominant contribution to X(2n 1) comes from the critical point at the edge of the extended Jones zone (initially at the center of the reduced B.Z.). The complete expressions are derived in (4,22) and calculated for different polydiacetylenes. We reproduce the values of x 2 for TCDU and PTS in table IV. The calculated values are in good agreement... [Pg.177]


See other pages where Conduction band, cell is mentioned: [Pg.204]    [Pg.468]    [Pg.345]    [Pg.514]    [Pg.767]    [Pg.393]    [Pg.214]    [Pg.215]    [Pg.271]    [Pg.290]    [Pg.569]    [Pg.91]    [Pg.92]    [Pg.97]    [Pg.98]    [Pg.99]    [Pg.105]    [Pg.115]    [Pg.8]    [Pg.364]    [Pg.245]    [Pg.256]    [Pg.256]    [Pg.721]    [Pg.723]    [Pg.737]    [Pg.744]    [Pg.747]    [Pg.747]    [Pg.749]    [Pg.1044]    [Pg.451]    [Pg.233]    [Pg.246]    [Pg.83]    [Pg.234]    [Pg.303]    [Pg.322]    [Pg.175]   
See also in sourсe #XX -- [ Pg.4 , Pg.45 , Pg.46 ]




SEARCH



Band cell

Band conductivity

Conductance cell

Conduction band

© 2024 chempedia.info