Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Condensed phase transferred

The investigation of the chemical modification of dextran to determine the importance of various reaction parameters that may eventually allow the controlled synthesis of dextran-modified materials has began. The initial parameter chosen was reactant molar ratio, since this reaction variable has previously been found to greatly influence other interfacial condensations. Phase transfer catalysts, PTC s, have been successfully employed in the synthesis of various metal-containing polyethers and polyamines (for instance 26). Thus, the effect of various PTC s was also studied as a function of reactant molar ratio. [Pg.429]

In Figure 7 a comparison is made of the frequency of the CHj antisymmetric stretching vibration as a function of molecular area for DPPC monolayer films at the A/W and A/Ge interfaces. As described above, the frequency of (his vibration is related to the overall macromolecular conformation of the lipid hydrocarbon chains. For the condensed phase monolayer (-40-45 A2 molecule 1), the measured frequency of the transferred monolayer film is virtually the same as that of the in-situ monolayer at the same molecular area, indicating a highly ordered acyl chain, predominately all-trans in character. For LE films as well as films transferred in the LE-LC phase transition region, however, the measured frequency appears independent (within experimental uncertainty) of the surface pressure, or molecular area, at which the film was transferred. The hydrocarbon chains of these films are more disordered than those of the condensed phase transferred films. However, no such easy comparison can be made to the in-situ monolayers at comparable molecular areas. For the LE monolayers (> ca. 70 A2 molecule 1), the transferred monolayers are more ordered than the in-situ film. In the LE-LC phase transition region ( 55-70 A2 molecule 1), the opposite behavior occurs. [Pg.203]

The results for the calculation of the orientation distribution for the hydrocarbon chains in the transferred monolayer films are presented in Figure 8. As is the case with the orientation distribution of the in-situ monolayers, the transferred films have a similar tilt angle in the expanded and phase transition regions. For the transferred monolayer, however, the tilt angle is in the range 35-40° from the surface normal, a much more oriented monolayer than the calculations indicate for the in-situ film (Figure 5). Figure 8 also shows that the condensed phase transferred monolayers are more oriented than those films transferred in the LE and LE-LC... [Pg.203]

A certain kind of radical transfer can be modelled by the transfer of a hydrogen atom from an alkane molecule to a small alkyl radical. This reaction was studied in detail in the gas phase. With hydrocarbon partners, heats of reaction are a fairly safe measure of the relative rate of transfer, as the pre-exponential Arrhenius factors remain approximately constant for a series of transfers to a given radical. Tabulated thermodynamic data indicate, however, [31, 32] that the correlation between the heat of reaction and the transfer rate is not valid for reactions of a radical with polar substrates [32, 33], In condensed phases, transfer reactions have not been sufficiently studied. Polymerizations themselves are the source of the most valuable, though incomplete, information. [Pg.454]

Method of synthesis polymer In final form cannot be processed, therefore precursor polymer Is synthesized first and then converted into film or the final forms. Precursor polymer can be obtained by one of the following methods Wessling route, ring opening polymerization, chemical vapor deposition, electropolymerization, condensation, phase transfer catalysis, or anionic polymerization Rnk, J K, High Performance Polymers, William Andrew, 2008. [Pg.549]

Lobaugh J and Voth G A 1994 A path integral study of electronic polarization and nonlinear coupling effects in condensed phase proton transfer reactions J. Chem. Phys. 100 3039... [Pg.898]

Much of chemistry occurs in the condensed phase solution phase ET reactions have been a major focus for theory and experiment for the last 50 years. Experiments, and quantitative theories, have probed how reaction-free energy, solvent polarity, donor-acceptor distance, bridging stmctures, solvent relaxation, and vibronic coupling influence ET kinetics. Important connections have also been drawn between optical charge transfer transitions and thennal ET. [Pg.2974]

Industrial examples of phase-transfer catalysis are numerous and growing rapidly they include polymerisa tion, substitution, condensation, and oxidation reactions. The processing advantages, besides the acceleration of the reaction, include mild reaction conditions, relatively simple process flow diagrams, and flexibiHty in the choice of solvents. [Pg.169]

A solid-liquid phase-transfer technique is used to synthesize aryl difluoro-methyl sulfides and selenides thiophenols dissolved in an aromatic solvent are treated with solid sodium hydroxide in the presence of a catalytic amount of tris(3,6-dioxaheptyl)amine (TDA1) [49] This condensation proceeds by a carbene mechanism (equation 44)... [Pg.457]

Interestingly, phase-transfer catalysts including crown ethers have been used to promote enantioselective variations of Darzens condensation. Toke and coworkers showed that the novel 15-crown-5 catalyst derived from d-glucose 33 could promote the condensation between acetyl chloride 31 and benzaldehyde to give the epoxide in 49% yield and 71% A modified cinchoninium bromide was shown to act as an effective phase transfer catalyst for the transformation as well. ... [Pg.18]

LY311727 is an indole acetic acid based selective inhibitor of human non-pancreatic secretory phospholipase A2 (hnpsPLA2) under development by Lilly as a potential treatment for sepsis. The synthesis of LY311727 involved a Nenitzescu indolization reaction as a key step. The Nenitzescu condensation of quinone 4 with the p-aminoacrylate 39 was carried out in CH3NO2 to provide the desired 5-hydroxylindole 40 in 83% yield. Protection of the 5-hydroxyl moiety in indole 40 was accomplished in H2O under phase transfer conditions in 80% yield. Lithium aluminum hydride mediated reduction of the ester functional group in 41 provided the alcohol 42 in 78% yield. [Pg.150]

In addition to two-phase conditions, phase transfer catalysts have been used to improve the Skraup/Doebner-von Miller reaction.Condensation of 32 with 5 in a two-phase system of toluene/con HCI provides 33 in 47% yield. Addition of 5 mol% tetra- -butyl ammonium chloride increased the yield to 57%. [Pg.491]


See other pages where Condensed phase transferred is mentioned: [Pg.397]    [Pg.264]    [Pg.264]    [Pg.445]    [Pg.446]    [Pg.203]    [Pg.397]    [Pg.264]    [Pg.264]    [Pg.445]    [Pg.446]    [Pg.203]    [Pg.852]    [Pg.887]    [Pg.894]    [Pg.895]    [Pg.1968]    [Pg.2953]    [Pg.3017]    [Pg.3017]    [Pg.3033]    [Pg.3035]    [Pg.3049]    [Pg.5]    [Pg.14]    [Pg.199]    [Pg.283]    [Pg.330]    [Pg.74]    [Pg.29]    [Pg.397]    [Pg.146]    [Pg.835]    [Pg.58]   


SEARCH



Condensed phases

Phase condensation

© 2024 chempedia.info