Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Complex reactions reduction

With RCH2CN, however, there is a tendency for Grignard reagents to remove a proton from the CH2 group, leading to more complex reactions. Reduction with Li AlH4e (c/. p. 214) yields RCH2NH2, NH3 adds to (193), in the presence of NH4 Cle to yield salts of amidines, RC(NH2)=NH2 Cle. Acid-catalysed addition of alcohols,... [Pg.244]

It is possible to visualize three mechanisms for these complex reactions reduction may precede oxidation, it may follow oxidation, or the two processes may occur simultaneously. The first two alternatives are not favored because no partial reactions have been detected and only angle enzymes appear to be required. The third alternative is advocated, therefore, but positive evidence in its support is lacking. The hypothetical... [Pg.217]

The hydrogenolyaia of cyclopropane rings (C—C bond cleavage) has been described on p, 105. In syntheses of complex molecules reductive cleavage of alcohols, epoxides, and enol ethers of 5-keto esters are the most important examples, and some selectivity rules will be given. Primary alcohols are converted into tosylates much faster than secondary alcohols. The tosylate group is substituted by hydrogen upon treatment with LiAlH (W. Zorbach, 1961). Epoxides are also easily opened by LiAlH. The hydride ion attacks the less hindered carbon atom of the epoxide (H.B. Henhest, 1956). The reduction of sterically hindered enol ethers of 9-keto esters with lithium in ammonia leads to the a,/S-unsaturated ester and subsequently to the saturated ester in reasonable yields (R.M. Coates, 1970). Tributyltin hydride reduces halides to hydrocarbons stereoselectively in a free-radical chain reaction (L.W. Menapace, 1964) and reacts only slowly with C 0 and C—C double bonds (W.T. Brady, 1970 H.G. Kuivila, 1968). [Pg.114]

Several types of reactions are commonly used in analytical procedures, either in preparing samples for analysis or during the analysis itself. The most important of these are precipitation reactions, acid-base reactions, complexation reactions, and oxidation-reduction reactions. In this section we review these reactions and their equilibrium constant expressions. [Pg.139]

In a complexation reaction, a Lewis base donates a pair of electrons to a Lewis acid. In an oxidation-reduction reaction, also known as a redox reaction, electrons are not shared, but are transferred from one reactant to another. As a result of this electron transfer, some of the elements involved in the reaction undergo a change in oxidation state. Those species experiencing an increase in their oxidation state are oxidized, while those experiencing a decrease in their oxidation state are reduced, for example, in the following redox reaction between fe + and oxalic acid, H2C2O4, iron is reduced since its oxidation state changes from -1-3 to +2. [Pg.145]

Coupling the mediator s oxidation or reduction to an acid-base, precipitation, or complexation reaction involving the analyte allows for the coulometric titration of analytes that are not easily oxidized or reduced. For example, when using H2O as a mediator, oxidation at the anode produces H3O+... [Pg.503]

Reaction of free-base porphyrin compounds with iton(II) salts in an appropriate solvent results in loss of the two N—H protons and insertion of iron into the tetradentate porphyrin dianion ligand. Five-coordinate iton(III) porphyrin complexes (hemins), which usually have the anion of the iton(II) salt for the fifth or axial ligand, ate isolated if the reaction is carried out in the presence of air. Iron(II) porphyrin complexes (hemes) can be isolated if the reaction and workup is conducted under rigorously anaerobic conditions. Typically, however, iton(II) complexes are obtained from iton(III) porphyrin complexes by reduction with dithionite, thiolate, borohydtide, chromous ion, or other reducing agents. [Pg.441]

However, this is an oversimplification, and the Bnchamp reduction is a complex reaction which can be better represented by the following stepwise mechanism (50). [Pg.262]

The oxygen reaction is quite complex. Complete reduction from oxygen gas to hydroxide ion involves four electrons and requires several steps. Initially, oxygen is reduced to peroxyl ion [14691-59-9]... [Pg.532]

The coordination chemistry of NO is often compared to that of CO but, whereas carbonyls are frequently prepared by reactions involving CO at high pressures and temperatures, this route is less viable for nitrosyls because of the thermodynamic instability of NO and its propensity to disproportionate or decompose under such conditions (p. 446). Nitrosyl complexes can sometimes be made by transformations involving pre-existing NO complexes, e.g. by ligand replacement, oxidative addition, reductive elimination or condensation reactions (reductive, thermal or photolytic). Typical examples are ... [Pg.448]

The modes of thermal decomposition of the halates and their complex oxidation-reduction chemistry reflect the interplay of both thermodynamic and kinetic factors. On the one hand, thermodynamically feasible reactions may be sluggish, whilst, on the other, traces of catalyst may radically alter the course of the reaction. In general, for a given cation, thermal stability decreases in the sequence iodate > chlorate > bromate, but the mode and ease of decomposition can be substantially modified. For example, alkali metal chlorates decompose by disproportionation when fused ... [Pg.863]

No hypotheses can be advanced for the sequences involved in the oxidation of cyclohexanepentols which react even more slowly with periodate than does (+)-quercitol. For instance, when the all-trans l 3, 5/2, 4-cyclohexanepentol (33) is oxidized (Figure 6), production of malonaldehyde starts very early and the time curve of periodate reduction indicates a very complex reaction. Nor is it possible to analyze satisfactorily the curves obtained with (1 l)-1, 2, 4/3, 5-cyclohexane-pentol (34) or with dl-1, 2, 3, 4/5-cyclohexanepentol (35) [this is the configuration predicted for the (1 D)-entantiomorph (41)]. [Pg.124]

The majority of potentiometric titrations involve chemical reactions which can be classified as (a) neutralisation reactions, (b) oxidation-reduction reactions, (c) precipitation reactions or (d) complexation reactions, and for each of these different types of reaction, certain general principles can be enunciated. [Pg.578]

In general, corrosion of metal is always accompanied by dissolution of a metal and reduction of an oxidant such as a proton in acidic solution and dissolved oxygen in a neutral solution. That is, metal corrosion is not a single electrode reaction, but a complex reaction composed of the oxidation of metal atoms and the reduction of oxidants. [Pg.217]

The second chapter is by Aogaki and includes a review of nonequilibrium fluctuations in corrosion processes. Aogaki begins by stating that metal corrosion is not a single electrode reaction, but a complex reaction composed of the oxidation of metal atoms and the reduction of oxidants. He provides an example in the dissolution of iron in an acidic solution. He follows this with a discussion of electrochemical theories on corrosion and the different techniques involved in these theories. He proceeds to discuss nonequilibrium fluctuations and concludes that we can again point out that the reactivity in corrosion is determined, not by its distance from the reaction equilibrium but by the growth processes of the nonequilibrium fluctuations. ... [Pg.651]

The strength and interrelation of catalysis, classical promotion and electrochemical promotion is illustrated in Fig. 2.3. The reaction under consideration14 is the reduction of NO by CO in presence of 02. This is a complex reaction system but of great technological importance for the development of efficient catalytic converters able to treat the exhaust gases of lean burn and Diesel engines. [Pg.17]

Both Ni and Pd reactions are proposed to proceed via the general catalytic pathway shown in Scheme 8.1. Following the oxidative addition of a carbon-halogen bond to a coordinatively unsaturated zero valent metal centre (invariably formed in situ), displacement of the halide ligand by alkoxide and subsequent P-hydride elimination affords a Ni(II)/Pd(ll) aryl-hydride complex, which reductively eliminates the dehalogenated product and regenerates M(0)(NHC). ... [Pg.208]

Before turning to epoxide opening with low valent metal complexes, the reduction of epoxides under Birch conditions [10-13] will be discussed very briefly for historical reasons. The initially formed radical is reduced further to give carbanionic species, that do not display the reactivity of radicals. No C - C bond-forming reactions have initially been reported. [Pg.36]

Cationic palladium complex 121 reductively coupled enynes (Eq. 20) using trichlorosilane as the stoichiometric reductant [71]. This combination of catalyst and silane afforded silylated methylenecyclopentanes such as 122 in good yield from enynes such as 123. Attempts to develop an enantioselective version of this reaction were not successful [71]. When enediyne 124 was cyclized in the presence of trichlorosilane, the reaction favored enyne cycli-zation 126 by a 3 1 ratio over diyne cyclization to 125 (Eq. 21). In contrast, when the more electron-rich dichloromethylsilane was used as the reductant, diyne cyclization product 125 was preferred in a ratio of 4 1 [71]. Selectivities of up to 10 1 for enyne cyclization were observed, depending on the substrate employed [72],... [Pg.242]

More complex oxidation-reduction reactions will be discussed in Chap. 13. [Pg.117]

Bora-2,5-cyclohexadienes have a much greater synthetic potential than is apparent from the examples given so far. This may be exemplified by two recent reactions. Reductive complex formation in the system Co(acac)3/COD/25/Mg/THF affords complex 51 via the organotin route (77) while an earlier synthesis used the cobaltocene route (60). Ni(COD)2 very cleanly forms the (Tj3-l,4,5-cyclooctenyl)nickel complex 52 (29). [Pg.221]


See other pages where Complex reactions reduction is mentioned: [Pg.226]    [Pg.426]    [Pg.312]    [Pg.497]    [Pg.262]    [Pg.69]    [Pg.76]    [Pg.1551]    [Pg.786]    [Pg.390]    [Pg.6]    [Pg.200]    [Pg.367]    [Pg.226]    [Pg.266]    [Pg.274]    [Pg.1011]    [Pg.60]    [Pg.93]    [Pg.212]    [Pg.213]    [Pg.142]    [Pg.392]   
See also in sourсe #XX -- [ Pg.207 ]




SEARCH



Complexes reduction

Complexity reduction

Iron carbonyl complexes reduction reactions

Metal complexes—continued oxidation-reduction reactions

Oxidation-reduction reactions between metal complexes

Oxidation-reduction reactions within metal complexes

Reduction reactions with NHC-bearing complexes

Reductive coupling reactions samarium complexes

Titanium complexes reduction reactions

© 2024 chempedia.info