Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Complex oxides representations

Ru 2,2 -bipyridine complexes can form a large number of colored compounds upon successive reduction, with the formal Ru oxidation state from +2 to -4. In the case of highly reduced complexes, proper representation of the electrochromic reaction is actually the reduction of the hgand, not that of the metal center. [Pg.625]

Fig. 10. Representation of the mechanism of redox driven K + transport using an electron and a cation carrier. (59-Ni°) and (59-Ni ) are the oxidized and reduced form of the electron carrier, the nickel bis-dithiolene complex 59 [] and [K+] are dicyclohexyl-18-crown-6 and its K+ complex. (Cited from Ref. 59>)... Fig. 10. Representation of the mechanism of redox driven K + transport using an electron and a cation carrier. (59-Ni°) and (59-Ni ) are the oxidized and reduced form of the electron carrier, the nickel bis-dithiolene complex 59 [] and [K+] are dicyclohexyl-18-crown-6 and its K+ complex. (Cited from Ref. 59>)...
Figure 2-2. Schematic representation of the radial waveforms for 3d, 45 and 4p orbitals in first row transition-metal ions of intermediate oxidation state (Werner-type complexes). Figure 2-2. Schematic representation of the radial waveforms for 3d, 45 and 4p orbitals in first row transition-metal ions of intermediate oxidation state (Werner-type complexes).
Schematic representation of the various reaction modes for the dissolution of Fe(III)(hydr)oxides a) by protons b) by bidentate complex formers that form surface chelates. The resulting solute Fe(III) complexes may subsequently become reduced, e.g., by HS c) by reductants (ligands with oxygen donor atoms) such as ascorbate that can form surface complexes and transfer electrons inner-spheri-cally d) catalytic dissolution of Fe(III)(hydr)oxides by Fe(II) in the presence of a complex former e) light-induced dissolution of Fe(III)(hydr)oxides in the presence of an electron donor such as oxalate. In all of the above examples, surface coordination controls the dissolution process. (Adapted from Sulzberger et al., 1989, and from Hering and Stumm, 1990.)... Schematic representation of the various reaction modes for the dissolution of Fe(III)(hydr)oxides a) by protons b) by bidentate complex formers that form surface chelates. The resulting solute Fe(III) complexes may subsequently become reduced, e.g., by HS c) by reductants (ligands with oxygen donor atoms) such as ascorbate that can form surface complexes and transfer electrons inner-spheri-cally d) catalytic dissolution of Fe(III)(hydr)oxides by Fe(II) in the presence of a complex former e) light-induced dissolution of Fe(III)(hydr)oxides in the presence of an electron donor such as oxalate. In all of the above examples, surface coordination controls the dissolution process. (Adapted from Sulzberger et al., 1989, and from Hering and Stumm, 1990.)...
Figure 2.5 Schematic representation of the Au/MPS/PAH-Os/solution interface modeled in Refs. [118-120] using the molecular theory for modified polyelectrolyte electrodes described in Section 2.5. The red arrows indicate the chemical equilibria considered by the theory. The redox polymer, PAH-Os (see Figure 2.4), is divided into the poly(allyl-amine) backbone (depicted as blue and light blue solid lines) and the pyridine-bipyridine osmium complexes. Each osmium complex is in redox equilibrium with the gold substrate and, dependingon its potential, can be in an oxidized Os(lll) (red spheres) or in a reduced Os(ll) (blue sphere) state. The allyl-amine units can be in a positively charged protonated state (plus signs on the polymer... Figure 2.5 Schematic representation of the Au/MPS/PAH-Os/solution interface modeled in Refs. [118-120] using the molecular theory for modified polyelectrolyte electrodes described in Section 2.5. The red arrows indicate the chemical equilibria considered by the theory. The redox polymer, PAH-Os (see Figure 2.4), is divided into the poly(allyl-amine) backbone (depicted as blue and light blue solid lines) and the pyridine-bipyridine osmium complexes. Each osmium complex is in redox equilibrium with the gold substrate and, dependingon its potential, can be in an oxidized Os(lll) (red spheres) or in a reduced Os(ll) (blue sphere) state. The allyl-amine units can be in a positively charged protonated state (plus signs on the polymer...
Figure 15.2 Structural formula of tetrahydrofolate and representation of derivatives involved in single carbon transfer. The tetrahydrofolate is always part of a complex with several glutamate residues. The parent compound, pteroylglutamate (folate) lacks four hydrogen atoms, one each from carbon atoms 5, 6, 7 and 8. Tetrahydrofolate can exist in any one of three oxidation states, as shown they are interconvertible through oxidereduction reactions. Each plays a individual and different role is synthesis of key compounds (See below). Figure 15.2 Structural formula of tetrahydrofolate and representation of derivatives involved in single carbon transfer. The tetrahydrofolate is always part of a complex with several glutamate residues. The parent compound, pteroylglutamate (folate) lacks four hydrogen atoms, one each from carbon atoms 5, 6, 7 and 8. Tetrahydrofolate can exist in any one of three oxidation states, as shown they are interconvertible through oxidereduction reactions. Each plays a individual and different role is synthesis of key compounds (See below).
A) clusters. To date, it has not proven possible to isolate a cluster in which only one of the trigonal faces is capped by an Mo(C0)3 fragment, although such species are in equilibrium with the dicapped cluster in solution (7A). This system represents one of the very few Mo-Fe-S clusters in which the detailed structure of the product was anticipated prior to its synthesis. If the problems associated with forming a monocapped species and subsequent oxidative decarbonylation at Mo can be overcome, these complexes will Indeed be the closest synthetic representations to FeMo-co yet achieved. [Pg.284]

Figure 9.2. Mechanisms of aminoglycoside toxicity. This schematic representation summarizes the principles of aminoglycoside toxicity discussed in the text. Treatment with the drugs leads to the formation of reactive oxygen species through a redox-active complex with iron and unsaturated fatty acid or by triggering superoxide production by way of NADPH oxidase. An excess of reactive oxygen species, not balanced by intracellular antioxidant systems, will cause an oxidative imbalance potentially severe enough to initiate cell death pathways. Augmenting cellular defenses by antioxidant therapy can reverse the imbalance and restore homeostasis to protect the cell. Figure 9.2. Mechanisms of aminoglycoside toxicity. This schematic representation summarizes the principles of aminoglycoside toxicity discussed in the text. Treatment with the drugs leads to the formation of reactive oxygen species through a redox-active complex with iron and unsaturated fatty acid or by triggering superoxide production by way of NADPH oxidase. An excess of reactive oxygen species, not balanced by intracellular antioxidant systems, will cause an oxidative imbalance potentially severe enough to initiate cell death pathways. Augmenting cellular defenses by antioxidant therapy can reverse the imbalance and restore homeostasis to protect the cell.
Models in general are a mathematical representation of a conceptual picture. Rate equations and mass balances for the oxidants and their reactants are the basic tools for the mathematical description. As Levenspiel (1972, p.359) pointed out the requirement for a good engineering model is that it be the closest representation of reality which can be treated without too many mathematical complexities. It is of little use to select a model which closely mirrors reality but is so complicated that we cannot do anything with it. In cases where the complete theoretical description of the system is not desirable or achievable, experiments are used to calculate coefficients to adjust the theory to the observations this procedure is called semi-empirical modeling. [Pg.127]

Figure 1 Schematic representation of the band formation in a columnar stack structure. (A) Semiconductor based on integral oxidation state complex. (B) One-dimensional metal produced by partial oxidation and resulting in a non-integral oxidation state... Figure 1 Schematic representation of the band formation in a columnar stack structure. (A) Semiconductor based on integral oxidation state complex. (B) One-dimensional metal produced by partial oxidation and resulting in a non-integral oxidation state...
A ubiquitous characteristic of vanadium chemistry is the fact that vanadium and many of its complexes readily enter into redox reactions. Adjustment of pH, concentration, and even temperature have often been employed in order to extend or maintain system integrity of a specific oxidation state. On the other hand, deliberate attempts to use redox properties, particularly in catalytic reactions, have been highly successful. Vanadium redox has also been successfully utilized in development of a redox battery. This battery employs the V(V)/V(IV) and V(III)AT(II) redox couples in 2.5 M sulfuric acid as the positive and negative half-cell electrolytes, respectively. Scheme 12.2 gives a representation of the battery. The vanadium components in both redox cells are prepared from vanadium pentoxide. There are two charge-discharge reactions occurring in the vanadium redox cells, as indicated in Equation 12.1 and Equation 12.2. The thermodynamics of the redox reactions involved have been extensively studied [8],... [Pg.217]


See other pages where Complex oxides representations is mentioned: [Pg.1001]    [Pg.771]    [Pg.1001]    [Pg.4455]    [Pg.276]    [Pg.1291]    [Pg.347]    [Pg.40]    [Pg.180]    [Pg.139]    [Pg.162]    [Pg.162]    [Pg.98]    [Pg.30]    [Pg.242]    [Pg.36]    [Pg.431]    [Pg.433]    [Pg.58]    [Pg.202]    [Pg.841]    [Pg.244]    [Pg.116]    [Pg.286]    [Pg.11]    [Pg.15]    [Pg.406]    [Pg.11]    [Pg.98]    [Pg.5]    [Pg.584]    [Pg.441]    [Pg.175]    [Pg.98]    [Pg.406]    [Pg.107]    [Pg.65]    [Pg.36]    [Pg.448]   
See also in sourсe #XX -- [ Pg.445 , Pg.451 ]




SEARCH



Complex representation

© 2024 chempedia.info