Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Compensation case example

Atomic units are used in all equations and all considerations concern non-relativistic quantum mechanics in Born-Oppenheimer approximation. Square brackets, as in E[p] for instance, are used to indicate that the relevant quantity is a functional i.e. the correspondence between a function in real space p = p(r) and a real number (energy in this example). Abbreviations or acronyms denoting different approximate exchange-correlation functionals reflect their common usage in the literature. They are collected in Appendix. Unless specified, the equations are given for the spin-compensated case. [Pg.157]

One manufacturer has found a way to overcome the lead-time problems so as to be able to quickly respond to fashion. Benetton, an Italian apparel manufacturer makes sweaters in bulk, but delays the dyeing process until after initial sales figures are received from the retailers. In other words, colour choices are made after the manufacture. This approach has increased the cost of production by 10 per cent but has resulted in improved forecasts, less surplus stock and due to quick response to customer demand higher sales which has more than compensated for the inCTease in production cost. Major retailers are responding to challenges of lean and agile supply chain (see Chapter 13) as the following case example of Tesco illustrates. [Pg.235]

When possible, quantitative analyses are best conducted using external standards. Emission intensity, however, is affected significantly by many parameters, including the temperature of the excitation source and the efficiency of atomization. An increase in temperature of 10 K, for example, results in a 4% change in the fraction of Na atoms present in the 3p excited state. The method of internal standards can be used when variations in source parameters are difficult to control. In this case an internal standard is selected that has an emission line close to that of the analyte to compensate for changes in the temperature of the excitation source. In addition, the internal standard should be subject to the same chemical interferences to compensate for changes in atomization efficiency. To accurately compensate for these errors, the analyte and internal standard emission lines must be monitored simultaneously. The method of standard additions also can be used. [Pg.438]

Two variables of primary importance, which are interdependent, are reaction temperature and ch1orine propy1ene ratio. Propylene is typically used ia excess to act as a diluent and heat sink, thus minimising by-products (eqs.2 and 3). Since higher temperatures favor the desired reaction, standard practice generally involves preheat of the reactor feeds to at least 200°C prior to combination. The heat of reaction is then responsible for further increases in the reaction temperature toward 510°C. The chlorine propylene ratio is adjusted so that, for given preheat temperatures, the desired ultimate reaction temperature is maintained. For example, at a chlorine propylene molar ratio of 0.315, feed temperatures of 200°C (propylene) and 50°C (chlorine) produce an ultimate reaction temperature of approximately 500°C (10). Increases in preheat temperature toward the ultimate reactor temperature, eg, in attempts to decrease yield of equation 1, must be compensated for in reduced chlorine propylene ratio, which reduces the fraction of propylene converted and, thus aHyl chloride quantity produced. A suitable economic optimum combination of preheat temperature and chlorine propylene ratio can be readily deterrnined for individual cases. [Pg.34]

Suspensions of fine sohds may have pseudoplastic or plastic-flow properties. When they are in laminar flow in a stirred vessel, motion in remote parts of the vessel where shear rates are low may become negligible or cease completely. To compensate for this behavior of slurries, large-diameter impellers or paddles are used, with (D /Df) > 0.6, where Df is the tank diameter. In some cases, for example, with some anchors, > 0.95 Df. Two or more paddles may be used in deep tanks to avoid stagnant regions in slurries. [Pg.1630]

A lead compensator, see case study Example 6.6, and equation (6.113) has a transfer function of... [Pg.222]

Nichols Chart for Case Study Example 6.6 %Lead Compensator Design One, Figure 6.34 clf... [Pg.396]

Let us now ask how this value could be used as a basis from which to measure the local disturbance of the water structure that will be caused by each ionic field. The electrostriction round each ion may lead to a local increase in the density of the solvent. As an example, let us first consider the following imaginary case let us suppose that in the neighborhood of each ion the density is such that 101 water molecules occupy the volume initially occupied by 100 molecules and that more distant molecules are not appreciably affected. In this case the local increase in density would exactly compensate for the 36.0 cm1 increment in volume per mole of KF. The volume of the solution would be the same as that of the initial pure solvent, and the partial molal volume of KF at infinite dilution would be zero. Moreover, if we had supposed that in the vicinity of each ion 101 molecules occupy rather less than the volume initially occupied by 100 molecules, the partial molal volume of the solute would in this case have a negative value. [Pg.191]

Although reactions in which molecules are cleaved into two or more pieces have favorable entropy effects, many potential cleavages do not take place because of large increases in enthalpy. An example is cleavage of ethane into two methyl radicals. In this case, a bond of 79 kcal mol (330 kJ mol ) is broken, and no new bond is formed to compensate for this enthalpy increase. However, ethane can be cleaved at very high temperatures, which illustrates the principle that entropy becomes more important as the temperature increases, as is obvious from the equation AG = AH — TAS. The enthalpy term is independent of temperature, while the entropy term is directly proportional to the absolute temperature. [Pg.278]

Another simple approach assumes temperature-dependent AH and AS and a nonlinear dependence of log k on T (123, 124, 130). When this dependence is assumed in a particular form, a linear relation between AH and AS can arise for a given temperature interval. This condition is met, for example, when ACp = aT" (124, 213). Further theoretical derivatives of general validity have also been attempted besides the early work (20, 29-32), particularly the treatment of Riietschi (96) in the framework of statistical mechanics and of Thorn (125) in thermodynamics are to be mentioned. All of the too general derivations in their utmost consequences predict isokinetic behavior for any reaction series, and this prediction is clearly at variance with the facts. Only Riietschi s theory makes allowance for nonisokinetic behavior (96), and Thorn first attempted to define the reaction series in terms of monotonicity of AS and AH (125, 209). It follows further from pure thermodynamics that a qualitative compensation effect (not exactly a linear dependence) is to be expected either for constant volume or for constant pressure parameters in all cases, when the free energy changes only slightly (214). The reaction series would thus be defined by small differences in reactivity. However, any more definite prediction, whether the isokinetic relationship will hold or not, seems not to be feasible at present. [Pg.461]


See other pages where Compensation case example is mentioned: [Pg.792]    [Pg.364]    [Pg.335]    [Pg.90]    [Pg.375]    [Pg.119]    [Pg.285]    [Pg.375]    [Pg.737]    [Pg.992]    [Pg.17]    [Pg.606]    [Pg.2223]    [Pg.559]    [Pg.139]    [Pg.435]    [Pg.757]    [Pg.730]    [Pg.376]    [Pg.531]    [Pg.218]    [Pg.1022]    [Pg.1250]    [Pg.249]    [Pg.143]    [Pg.247]    [Pg.214]    [Pg.206]    [Pg.294]    [Pg.19]    [Pg.314]    [Pg.79]    [Pg.452]    [Pg.160]    [Pg.200]    [Pg.7]    [Pg.75]    [Pg.306]    [Pg.142]    [Pg.32]    [Pg.194]   
See also in sourсe #XX -- [ Pg.61 , Pg.455 , Pg.459 , Pg.463 ]




SEARCH



Case Example

© 2024 chempedia.info